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Abstract 

Bac kgr ound: Phage ther apy, reemerging as a promising approach to counter antimicrobial-resistant infections, relies on a comprehen- 
si v e understanding of the specificity of individual phages. Yet the significant diversity within phage populations presents a consider- 
a b le c hallenge . Curr entl y, ther e is a nota b le lack of tools designed for large-scale c har acterization of pha ge r ece ptor-binding pr oteins, 
which are crucial in determining the phage host r ange . 

Results: In this study, we present SpikeHunter, a deep learning method based on the ESM-2 protein language model. With Spike- 
Hunter, we identified 231,965 di v erse pha ge-encoded tailspike pr oteins, a crucial determinant of phage specificity that targets bacterial 
pol ysaccharide r ece ptors, acr oss 787,566 bacterial genomes fr om 5 virulent, antibiotic-r esistant pathogens. Nota b l y, 86.60% (143,200) 
of these proteins exhibited strong associations with specific bacterial polysaccharides. We discovered that phages with identical tail- 
spike proteins can infect different bacterial species with similar polysaccharide receptors, underscoring the pivotal role of tailspike 
proteins in determining host r ange . The specificity is mainly attributed to the protein’s C-terminal domain, which strictly correlates 
with host specificity during domain swapping in tailspike proteins. Importantly, our dataset-driven predictions of phage–host speci- 
ficity closely match the phage–host pairs observed in real-world phage therapy cases we studied. 

Conclusions: Our resear c h provides a ric h resour ce , including both the method and a data base deri v ed fr om a larg e-scale g enomics 
surv ey. This substantiall y enhances understanding of pha ge specificity determinants at the strain level and offers a v alua b le frame- 
work for guiding phage selection in therapeutic applications. 

Ke yw ords: phage–host specificity, phage receptor-binding protein, bacterial polysaccharide, serotype, phage therapy 
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Introduction 

Pha ge ther a py is gaining r ene wed inter est as a solution to antimi- 
cr obial r esistance, whic h is r eflected by the incr eased number of 
case reports describing the use of phage treatments [ 1–4 ]. Under- 
standing pha ge–host inter actions and the determinants of pha ge 
host specificity at the strain and species level is crucial for improv- 
ing phage therapy and applying phage proteins in biotechnology 
[ 5–7 ]. Extensive work has been done to understand what bacte- 
ria specific phages can infect and which proteins are involved in 

this process [ 8–10 ]. Phage receptor-binding proteins, in particular,
are gaining popularity due to their direct interaction with host re- 
ceptors and their potential to streamline the selection of effective 
pha ges for ther a py, a k e y bottleneck in its br oader a pplication [ 11–
13 ]. 

Tailspike proteins are a type of phage receptor-binding protein 

that specifically recognizes and breaks down bacterial cell sur- 
face pol ysacc harides, suc h as the ca psular pol ysacc harides (K- 
antigens), the O-specific pol ysacc harides of the lipopol ysacc ha- 
ride (O-antigens), and the outer core (OC) of the lipooligosac- 
charide (OC-antigen) to initiate infection [ 14–17 ]. T hey ha ve also 
shown promise as antimicrobials that can be used to sensitize re- 
sistant strains [ 18 ] and degrade biofilms [ 19 ]. Given their central 
role in phage–host interactions, many studies have attempted to 
understand the associations of tailspike proteins with bacterial 
Recei v ed: September 28, 2023. Revised: January 23, 2024. Accepted: Mar c h 24, 2024 
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US. 
erotypes, the types of polysaccharides on the bacterial cell sur-
ace . Recent studies ha ve shown that the host range of Klebsiella
ha ges is gener all y r estricted and hav e shed light on the role of
hage tailspike proteins in defining this specificity [ 9 ]. Similarly,
ther studies related to Ackermannviridae and Escherichia viruses 
av e demonstr ated that tailspike pr oteins ar e tightl y associated
ith host serotype and that recombination of tailspike protein do-
ains may be a k e y dri ver in tailspike protein evolution [ 9 , 10 , 20 ].
Experimental phage host–range determination is laborious and 

ime-consuming. While these studies have provided valuable ex- 
mples of the association of pha ge r eceptor-binding pr oteins with
pecific host receptors, their scale and scope, often focusing on
ingle bacterial species and fewer than a hundred phages, lim-
ts their generalizability and pr edictiv e po w er. Computational
 ppr oac hes, whic h pr edict host r anges utilizing genomic informa-
ion [ 12 ], offer a significant adv anta ge. Methods employing large-
cale genomic data grounded in pha ge host–r ange mec hanisms
an provide enhanced sensitivity and predictive po w er at finer
axonomic r esolutions, ther eby supporting futur e pha ge ther a py
nitiatives. 

In this study, we conducted a lar ge-scale, m ultispecies genomic
nalysis to better understand the role of tailspike proteins in
hage host specificity at the strain level. Utilizing a deep learning–
ased method, SpikeHunter, we identified tailspike proteins 
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pecific to serotypes from 5 prevalent human pathogens and
reated a comprehensive phage–host association database. Our
ndings indicate that host range is primarily governed by the
pecificity of the tailspike pr otein, enabling pha ges with identical
ailspike proteins to infect diverse bacterial species sharing the
ame serotypes . T his specificity is mainly attributed to the C-
erminal domain, as host specificity was observed to strictly follow
his domain during extensive domain swapping in tailspike pro-
eins . Furthermore , our dataset-driven phage–host specificity pre-
ictions align well with established phage–host pairs emplo y ed

n r eal-world pha ge ther a p y cases. By expanding the kno wledge
f the molecular basis of phage host specificity, our r esearc h en-
ances both the applications and the engineering of phages to
ar get ne w str ains [ 21 ] or circumv ent bacterial r esistance [ 22 ],
her eby adv ancing pha ge ther a py. The anal ysis performed in this
tudy is provided at [ 23 ]. The expansive dataset of tailspike pro-
eins and the SpikeHunter model are available at TailspikeDB [ 24 ]
nd via GitHub [ 25 ], r espectiv el y, whic h can guide futur e pha ge
pplications and predictions on phage host range. 

ethods 

raining and validation data 

 total of 3,659 bacteriophage genomes w ere do wnloaded from
he INPHARED database (v1.7) [ 26 ]. This collection of proteins was
plit into tailspike and non-tailspike phage protein datasets. A
ossible tailspike protein dataset was generated based on k e y-
 or d sear c hes and comparisons to other annotated vir al pr o-

eins in the NCBI nr database using BlastP, PDB using SCOP ( RRID:
CR _ 007039 ) [ 27 ], and the viral ortholog databases, PHROG [ 28 ],
VOG [ 29 ], ViPhOG [ 30 ], eggNOG viral ortholog groups ( RRID:SCR _
02456 ) [ 31 ], and VOGDB [ 32 ], using HMMER ( RRID:SCR _ 005305 ).
r oteins that wer e annotated as tailspike, tail fiber, or receptor
inding were included in the candidate tailspike dataset along
ith proteins whose top hit was annotated as tailspike proteins in
ther databases . T he set of candidate tailspike proteins were then
lustered at 70% identity using CD-HIT ( RRID:SCR _ 007105 ) [ 33 ,34 ]
nd their structures were predicted using AlphaFold v2.3.2 [ 35 ].
he structur es wer e then manuall y cur ated to identify a final set
f 1,912 tailspike proteins based on the presence of the distinctive
eta-helix receptor-binding domain. The remaining 200,732 non-
ailspike proteins (excluding those classified as part of the “un-
no wn” category in INPHARED) w ere included in the non-tailspike
ataset. 

ndependent testing data 

he independent dataset was compiled using a r ecentl y anno-
ated dataset of 100,081 proteins from 96 phages that infect
03 strains of the Escherichia genus [ 36 ]. Within this dataset,
1 curated tailspike proteins were designated as positive sam-
les, and the rest of the proteins were categorized as negative
amples. 

odel architecture 

he SpikeHunter ( RRID:SCR _ 024831 ) was de v eloped using the
yTorc h fr ame work ( RRID:SCR _ 018536 ) [ 37 ]. First, the phage se-
uences are first tokenized and transformed into numerical vec-
ors using the batch_converter function in the ESM python pac ka ge
 38 ]. The sequences are then embedded as 1,280 length r epr esen-
ations using a pr etr ained tr ansformer pr otein langua ge model
SM-2 (esm2_t33_650M_UR50D) [ 39 ]. The sequence r epr esenta-
ions are fed into a 4-fully-connected layer network with 1280,
68, 128, and 2 nodes, r espectiv el y. The output from the last layer
s converted into a probability representing each sequence being
 tailspike protein or not with a softmax activation function. The
pikeHunter model and code is available on GitHub [ 25 ]. 

We further conducted ablation studies on SpikeHunter by alter-
ng its modules to analyze the effect of the different components.
he modifications included (i) removing the 568-neuron hidden

ayer from the fully connected layers; (ii) removing the 128-neuron
idden layer from the fully connected layers; (iii) replacing the
r etr ained ESM-2 encoder, used for input sequence embedding,
ith the SeqVec encoder [ 40 ]; and (iv) integrating dropout layers
ith a 0.2 dropout ratio into each linear layer of the fully con-
ected la yers . After these arc hitectur al c hanges, the models wer e
 etr ained. Their performance on the validation dataset was then
 v aluated using metrics such as accur acy, pr ecision, r ecall, speci-
city, F1-scor e, and Matthe w’s corr elation coefficient (MCC). These
odified models are available on GitHub at [ 23 ]. 

raining and validation of the deep learning 

odel 
o train and validate the SpikeHunter, the manuall y cur ated set
f pha ge pr oteins, consisting of both tailspike pr oteins and non-
ailspike proteins, was first clustered into 20,274 clusters at 30%
dentity using CD-HIT [ 34 ]. Each cluster contained only tailspike
r non-tailspike proteins, with no mixed clusters being observed
n the dataset. The sequences were then divided into tr aining, v al-
dation, and testing datasets in a ratio of 3:1:1 using the Stratified-
roupKFold function in the Scikit-learn python pac ka ge [ 41 ], r esult-

ng in a training set of 122,506 proteins (comprising 1,023 posi-
ive samples and 121,483 negative samples belonging to 12,170
lusters), a validation set of 40,838 proteins (comprising 343 posi-
ive samples and 40,495 negative samples belonging to 4,054 clus-
ers), and a testing set of 39,300 proteins (comprising 546 pos-
tive samples and 38,754 negative samples belonging to 4,050
lusters). The model training was performed with the cross-
ntropy loss function and the Pytorch implementation of the
dam optimizer, with the parameters of the ESM-2 model frozen.
he training was halted when the model’s performance on the
alidation dataset did not improve for 3 consecutive epochs . T he
odel with the lo w est validation loss was then used for testing

nd prediction. 

dentification of tailspike proteins in bacterial 
enomes 

 total of 787,566 genomes of 5 common pathogens, Esc heric hia
oli , Klebsiella pneumoniae , Pseudomonas aeruginosa , Salmonella en-
erica , and Acinetobacter baumannii , were obtained from the NCBI
athogen Detection database [ 42 ], downloaded on 2 April 2023
 43 ]. Pr opha ge r egions wer e pr edicted in the pathogen genomes
sing VIBRANT (version 1.2.0) with default parameters to identify
hages within the bacterial genomes . T he protein sequences of
he phages with lengths greater than 200 amino acids were then
xtracted, and SpikeHunter was used to classify them as either
ailspike or non-tailspike pr oteins. Onl y pr oteins with greater than
0% probability of being a tailspike protein were positive hits for
ailspike proteins. All identified tailspike protein IDs with their cor-
esponding clusters at various protein identities are provided at
 23 ] . 

acterial genome serotyping 

er otype pr ediction for the 5 anal yzed micr obial species was
erformed using a variety of species-specific tools. O-antigen

https://scicrunch.org/resolver/RRID:SCR_007039
https://scicrunch.org/resolver/RRID:SCR_002456
https://scicrunch.org/resolver/RRID:SCR_005305
https://scicrunch.org/resolver/RRID:SCR_007105
https://scicrunch.org/resolver/RRID:
https://scicrunch.org/resolver/RRID:SCR_024831
https://scicrunch.org/resolver/RRID:SCR_018536
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ser otypes wer e pr edicted for E. coli using ECTyper [ 44 ], Ser otype- 
Finder [ 45 ], and fastKa ptiv e [ 46 ]. Ser otypes wer e gr ouped into 
ser ogr oups according to Iguchi et al. [ 47 ]. K-antigen prediction 

for E. coli genomes was done using fastKa ptiv e [ 46 ]. K. pneumo- 
niae K- and O-antigen serotypes were inferred using Kaptive ( RRID: 
SCR _ 024046 ) [ 48 ] and fastKa ptiv e [ 46 ]. A. baumannii K-antigen 

and OC serotypes were predicted using Kaptive [ 48 ]. P. aerugi- 
nosa O-antigen serotypes were predicted using PAst [ 49 ]. O-antigen 

ser otypes wer e pr edicted for S. enterica using SeqSero2 [ 50 ] and 

fastKa ptiv e [ 46 ]. All tools were run using default settings. Results 
fr om Ka ptiv e with matc h confidence scor es of “None” and r esults 
fr om fastKa ptiv e with best matc h cov er a ges lo w er than 90 w ere
excluded from the downstream analysis. To facilitate the compar- 
ison of serotypes between species, shared serotypes were merged 

and consistently named for the set of K. pneumoniae and E. coli K- 
antigens and the set of E. coli and S. enterica O-antigens. Common 

serotypes between K. pneumoniae and E. coli were identified by pre- 
dicting serotypes in the K. pneumoniae genome using the fastKap- 
tive tool. The predicted K. pneumoniae serotypes from Kaptive and 

fastKa ptiv e wer e then used to ma p the shar ed ser otypes between 

the 2 species . T he same pr ocedur e w as follo w ed for identifying 
common serotypes between S. enterica and E. coli , but with the S.
enterica genomes being annotated using SeqSero2 and fastKa ptiv e 
to provide the mapping to the E. coli genomes. 

Associating tailspike proteins with serotypes 

Tailspike protein sequences w ere hierar chically clustered at 30%,
40%, 50%, 60%, 70%, 80%, 85%, 90%, and 95% identities using 
cd-hit v.4.8.1 [ 34 ]. The tailspike protein clusters at different lev- 
els were associated with the vOTUs (viral Operational Taxonomic 
Units) they were found in and the serotypes of the genomes that 
the vOTUs were in. In this study, a vOTU is defined as a cluster 
that contains phage genomes with an Average Nucleotide Iden- 
tity (ANI) ≥ 95% and an alignment cov er a ge of shorter sequence ≥
85%. When encountering multiple instances of the same 95% tail- 
spike protein cluster, vOTU, and serotype within the dataset, only 
1 instance was retained for subsequent analysis to eliminate re- 
dundancy. An ov er all network of tailspike pr otein clusters at 60% 

identity and serotypes was then generated with the links between 

them being determined by the vO TUs . Associations between the 
tailspike protein clusters at 60% identity and serotypes were clas- 
sified into 3 categories: “highly confident, ” “confident, ” and “un- 
certain.” “Highly confident” associations were tailspike to serotype 
pairs that were supported by at least 90% of the vOTUs containing 
that 60% tailspike protein cluster for tailspike proteins with more 
than 4 vOTU connections or that were supported by all vOTUs 
for tailspike protein clusters with less than or equal to 4 vO TUs .
“Confident” associations were tailspike to serotype pairs that were 
supported by 10% to 90% of the vOTUs with the tailspike protein 

cluster, and the remaining associations were classified as “uncer- 
tain.” Mor e information r egarding the assignment of serotypes to 
a tailspike protein cluster can be found within the code hosted 

on GitHub [ 23 ]. A database featuring tailspike proteins and their 
associations with serotypes is accessed at TailSpikeDB [ 24 ]. 

Identification of domain swapping between 

tailspike proteins 

An all-by-all BlastP [ 51 ] search was performed to compare all 
nonredundant tailspike protein sequences, and the hits were fil- 
tered using an e-value cutoff of 1e-8, identity threshold of 60%,
and a cov er a ge r ange of 10% to 90% of the sequence. Candidate 
domain swapping was found by identifying proteins that aligned 
o at least 2 other proteins that cumulatively covered at least
0% of the original query sequence. Breakpoints for the N- and
-terminal domains were determined by computing the av er a ge
lignment start and end positions from all of the alignments to
ach query tailspike protein. The domain sequences were then ex- 
racted and clustered using psi-cd-hit v.4.8.1 at 30% and 95% iden-
ity thresholds [ 52 ]. Domain sw apping w as onl y consider ed plau-
ible if they were validated by multiple proteins with the same do-
ain at 95% identity while having different versions of the other

omain at 30%. Circlize v0.4.15 was used to visualize the N/C-
erminal domain swapping for each species [ 53 ]. 

he collection of phage host range determination 

rials and phage therapy preclinical and clinical 
ases 

he phage host range determination trial s were collected from
hReD [ 54 , 55 ] and VHRdb [ 56 , 57 ] databases . T he preclinical trials
ere collected from a list of trials in Gómez-Ochoa et al. [ 58 ] while

he clinical cases were collected from case studies listed at [ 59 ]
nd cases reported in Green et al. [ 60 ]. The phage genomes and
acterial genomes or serotype information were extracted from 

iter atur e or searc hed in GenBank. The missing bacterial serotypes
er e inferr ed by the ser otype tools pr e viousl y mentioned. 

esults 

etecting sequence-di v ergent tailspik e proteins 

n phages using deep learning 

o investigate the association between tailspike proteins and bac- 
erial surface pol ysacc haride antigens, we first de v eloped a deep
earning method named SpikeHunter to identify tailspike proteins 
Fig. 1 A). SpikeHunter was built on the ESM-2 lar ge pr otein lan-
uage model [ 39 ] to embed a protein sequence into a r epr esen-
ativ e v ector and pr edict the pr obability of that pr otein being a
ailspike protein using a fully connected 3-layer neural network 
Fig. 1 B). A r efer ence set of 1,912 tailspike protein sequences and
00,732 non-tailspike protein sequences was curated from the IN- 
HARED database [ 26 ]. The labeled protein sequences were then
artitioned into tr aining, v alidation, and testing datasets at a ra-
io of 3:1:1. This partition was conducted to pr eserv e an equivalent
roportion of positive samples across each set and to ensure that
o sequence within a particular set displayed over 30% identity
ith a sequence in another set (Table 1 ). 
Early stopping was adopted to stop training once the model per-

ormance was no longer impr ov ed on the v alidation dataset for 3
onsecuti ve e pochs to avoid overfitting ( Supplementary Fig. S1 ).
valuation of the model on the testing dataset demonstrated that
pikeHunter was accurate and sensitiv e, ac hie ving an F1-score
f 0.99991, precision of 0.99995, recall of 0.99987, specificity of
.99634, an MCC of 0.99352, and the area under the precision–
 ecall curv e (PRAUC) of 0.99360 (Fig. 1 C). Evaluated on an inde-
endent testing set consisting of 100,081 phage proteins with 81
s positive samples [ 36 ], SpikeHunter ac hie v ed an F1-scor e of
.99985, precision of 1.0, recall of 0.99970, specificity of 1.0, an
CC of 0.98183, and the PRAUC of 0.99985. 
We further investigated the effect of data imbalance on model

erformance. To address this, we oversampled positive samples in 

he training and validation datasets, creating a balanced dataset 
ith an equal number of positive and negative samples ( N =
21,483 for each class for training and N = 40,495 for each class
or validation). The comparison between models trained on the 
riginal dataset and the balanced dataset r e v ealed minor c hanges

https://scicrunch.org/resolver/RRID:SCR_024046
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae017#supplementary-data
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Figure 1: De v elopment of SpikeHunter. (A) Dia gr am showing the pr oject w orkflo w for the identification of tailspike pr otein and ser otype associations. 
(B) Organization of the training data and the model architecture for SpikeHunter. (C) The precision–recall curve with an area under the curve for 
SpikeHunter e v aluated on a testing dataset consisting of 39,300 pha ge pr oteins. 

Table 1: Ov ervie w of tr aining, v alidation, and testing dataset splits 

Dataset 
type 

Protein cluster 
count 

Tailspike protein 
count, n (%) 

Non-tailspike protein 
count, n (%) 

Total protein 
count Percentage 

Training 12,170 1,023 (0.835%) 121,483 (99.165%) 122,506 60.5% 

Validation 4,054 343 (0.840%) 40,495 (99.160%) 40,838 20.2% 

Testing 4,050 546 (1.389%) 38,754 (98.611%) 39,300 19.4% 
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n performance, with a slight increase in F1-score by 1.182% and
 small decrease in specificity by 0.025% on the validation data.
hese results suggest that data imbalance does not significantly

mpact the model’s performance ( Supplementary Table S1 ). Addi-
ionall y, we e v aluated model performance based on ablation stud-
es . Adding dropout la yers to, or remo ving the 568-neuron hid-
en layer from, the fully connected neural network resulted in
nchanged performance for SpikeHunter. Ho w ever, removing the
28-neuron layer led to decreases in both F1-score (by 0.145%)
nd specificity (by 0.002%). This indicates the greater importance
f the 128-neuron layer compared to the 568-neuron layer in the
odel, suggesting that the featur es extr acted fr om this layer ar e
ore useful in assisting the model with classification. We also

ubstituted the pr etr ained ESM-2 model in SpikeHunter with an-
ther pr etr ained model, SeqVec [ 40 ], which focuses less on struc-
ure, for embedding the input sequences. This substitution re-
ulted in more pronounced declines in performance metrics, with
 6.59% reduction in F1-score and a 0.09% decrease in specificity.
his finding indicates that the ESM-2 encoder is a k e y contribu-
or to SpikeHunter’s performance, suggesting that the structural
eatures of the tailspike protein are the k e y to reliable tailspike
rotein identification ( Supplementary Table S1 ). 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae017#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae017#supplementary-data
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In summary, based on the testing results, we concluded that 
SpikeHunter is an effective tool for tailspike protein identification 

and utilized it in subsequent analyses. 

Identification of 231,965 pr opha ge-encoded 

tailspike proteins from the genomes of 5 

common pathogens 

A total of 787,566 genomes from E. coli , P. aeruginosa , Kleb- 
siella , Acinetobacter , and Salmonella in the NCBI Pathogen Detec- 
tion database were analyzed to predict prophages, prophage- 
encoded tailspike proteins, and bacterial serotypes. Prophages 
wer e pr edicted in 99.4% (783,033) of the genomes, resulting 
in 8,434,760 pr opha ge genomes containing 177,337,485 pr otein- 
encoding genes across the entire dataset (Fig. 2 A). The Spike- 
Hunter was used to identify tailspike proteins within the 
pr opha ges, r esulting in the identification of 231,965 tailspike 
proteins in 10,676,658 proteins from 228,055 prophages, repre- 
senting 17,932 vO TUs . Despite the r elativ el y small fr action of 
pr opha ge genomes with a predicted tailspike protein (2.7%), 25.7% 

of the bacterial genomes analyzed contained at least 1 prophage 
genome with a predicted tailspike pr otein. Typicall y, onl y 1 tail- 
spike protein was observed in each prophage genome, but 1.67% 

of pr opha ges (3,814 out of 228,055) wer e found to encode 2 or 
mor e tailspike pr oteins (Fig. 2 A). In the most extr eme case, a sin- 
gle pr opha ge fr om a K. pneumoniae (GCA_003037395.1) genome 
contained 14 predicted and was similar to the φKp24 jumbo 
pha ge, whic h is known for its highly branched tail structure 
and expanded host range [ 61 ] ( Supplementary Fig. S2 ). Over- 
all, 208,900 pr opha ges with tailspike pr oteins wer e identified in 

182,937 bacterial genomes that also had a serotype prediction,
pro viding good co verage across the species and facilitating the 
subsequent multispecies analysis of tailspike protein–serotype 
associations. 

While most vOTUs (15,022 of 16,535, 90.85%) only contained 

tailspike proteins from 1 group (clustered at 60% identity), mul- 
tiple examples (1,513 of 16,535, 9.15%) of vOTUs composed of 
pr opha ges with tailspike proteins belonging to different groups 
were found. In 1 example, a vOTU associated with E. coli was 
composed of pr opha ges with 24 distinct tailspike proteins asso- 
ciated with distinct predicted serotypes, including a mix of K- 
and O-antigens ( Supplementary Fig. S3 ). Similarly, a Klebsiella- 
associated vOTU was identified where the 5 pr opha ges eac h 

had a distinct tailspike protein and were associated with dif- 
fer ent K-antigen ser otypes (Fig. 2 C). The differences in tailspike 
pr otein and ser otype associations for these otherwise similar 
pr opha ges pr ovide further e vidence of the importance of the 
tailspike protein in driving host specificity. Similar tailspike pro- 
teins were found in distinct vOTUs from the same genomes 
(Fig. 2 B). Despite the difference in genomic content and orga- 
nization between these vO TUs , their shared bacterial host fur- 
ther corr obor ates the link between the tailspike proteins and 

serotypes. 
The distribution of serotypes in relation to tailspike proteins 

was then investigated. Bacterial serotypes were predicted for each 

of the bacterial genomes, resulting in 182,937 bacterial genomes 
that had a predicted serotype and at least 1 prophage with an 

identified tailspike protein (Fig. 2 D). The tailspike proteins were 
subjected to hier arc hical clustering anal ysis based on 30%, 60%,
and 95% identity thresholds, and their relationship with the cor- 
r esponding host ser otypes of their vOTUs was examined. While 
the specific outcomes v aried acr oss differ ent clusters, the pr e- 
dominant serotype associated with each cluster at the 30% iden- 
ity le v el gener all y exhibited consistency with its descendant
lusters at the 60% identity le v el. Ho w e v er, certain exceptions
er e observ ed. For instance, the cluster labeled cl30_19 in Kleb-

iella , whic h emer ged at the 30% identity le v el, displayed high
iversity within its descendant cluster at the 60% identity le v el
 Supplementary Fig. S4 ). Consequently, an identity threshold of
0% was proposed for all tailspike proteins to strike a reasonable
alance between cluster purity and reducing redundancy in the 
esults ( Supplementary Fig. S5 ). 

r opha ge-encoded tailspike proteins are reliable 

ndicators of bacterial polysaccharide receptors 

n the ov er all dataset, ther e wer e 1,180 unique tailspike pr otein
o serotype associations identified, of which 715 (60.59%) were 
ound to be strong associations (Fig. 3 , Supplementary Fig. S6 ). A

ajority of these strong associations were found from the E. coli
Fig. 3 A) and Klebsiella (Fig. 3 B) genomes, but multiple strongly as-
ociated tailspike–serotype pairs were still predicted for Salmonella 
Fig. 3 C), Acinetobacter ( Supplementary Fig. S7 ), and P. aeruginosa
 Supplementary Fig. S7 ), providing cov er a ge acr oss all 5 taxa
 Supplementary Table S2 ). These str ongl y associated tailspike–
erotype pairs consisted of 681 unique tailspike clusters and 322
nique serotypes (127 K-antigens and 195 O/OC-antigens). Most 
f the str ongl y ser otype-associated tailspike pr oteins wer e con-
ected to only 1 serotype (99.56%) (Fig. 3 ), suggesting that these
articular pha ge r eceptor-binding pr oteins typicall y tar get a nar-
 ow r ange of hosts. 

The association between pr opha ge tailspike pr oteins and bac-
erial serotypes cannot be attributed to phylogenetic relatedness 
lone . T he loci encoding bacterial surface pol ysacc harides, whic h
etermine ser otypes, ar e known to under go fr equent horizontal
ene transfer and exhibit a polyphyletic distribution of serotypes 
 46 ]. For instance, the serotype O81 in E. coli is distributed among

ultiple clades, and the tailspike protein cluster cl60_897 is found
o strictly follow the clades that encompass the O81 serotype. An-
ther example pertains to the K57 serotype in Klebsiella , where the
ssociated tailspike cluster cl60_351 is present in 3 of the 4 main
57 clades ( Supplementary Fig. S8 ). These findings suggest that

he distribution of tailspike proteins aligns with serotypes rather 
han the phylogeny of the bacterial hosts. 

Tailspike protein clusters that were strongly associated with 

 ultiple ser otypes may be indicators of associations with other
ol ysacc harides or shar ed pol ysacc haride structur es between the
er otypes. A fe w instances wer e observ ed in E. coli and Kleb-
iella where 1 tailspike protein was associated with 2 differently
nnotated serotypes. While polysaccharide structural informa- 
ion for many of the serotypes is not a vailable , examples were
ound for some of these components where the polysaccha- 
ide structures were similar. One tailspike protein was found 

o be associated with the E. coli O123 and O186 serotypes and
he S. enterica O58 ser otype, whic h hav e all been found to
av e a shar ed gl ycan bac kbone structur e composed of 4-(N-
cetylalanyl)amido-4,6-dideoxyglucose , N-acetyl-D-glucosamine ,
,5-dideo xy-2-(3-hydro xybutyramido)-glucose, and N-acetyl-D- 
lucosamine [ 62 ] (Fig. 3 A). Similarl y, a tailspike pr otein was
tr ongl y associated with the K2 and K13 serotypes in Klebsiella ,
hic h both shar e a bac kbone structur e of 2 D-glucose units and
 D-mannose unit [ 63 ] (Fig. 3 B), and strains with these serotypes
av e been observ ed to be infected by the same phages [ 64 ]. These
xamples provide further evidence that tailspike proteins are as- 
ociated with specific pol ysacc haride structur es and can pr o-
ide valuable information about their associated bacterial host 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae017#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae017#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae017#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae017#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae017#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae017#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae017#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae017#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae017#supplementary-data
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Figure 2: Identification of tailspike proteins and serotypes. (A) Number of pr opha ges detected in the genomes of each pathogen. (B) Prophages detected 
in a Klebsiella genome (GCA_028765205.1) with the same tailspike protein clustered at 60% identity. (C) Similar prophages with different tailspike 
proteins detected in multiple Klebsiella genomes. For panels B and C, the amino acid similarity between genes is shown by the shaded region between 
the genes and the tailspike proteins are colored in red. (D) Predicted serotypes for genomes of each of the pathogens . T he relatively small number of 
genomes with K-antigen predictions for the E. coli can be partially attributed to the lack of group 4 K-antigen prediction, which would be functionally 
redundant with the strain O-antigen typing. 
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er otypes. Lar ger components containing links between multiple
ailspike proteins and serotypes were observed for each of the 5
axa (Fig. 3 ). While some of these associations may be biologically
 ele v ant, these links ar e likel y the r esult of either unpr edicted
erotypes that are common to the genomes and associated with
he tailspike proteins or due to other factors like the association
f the tailspike proteins with polysaccharides that are not K- or
/OC-antigens. 
(  
ighly similar tailspike proteins are found in 

ifferent host species with closely related surface
olysaccharides 

ighly similar tailspike proteins (above 95% identity) were found
n pr opha ges fr om genomes of differ ent host species. Nearl y all
he tailspike protein clusters (at 95% identity) were composed
f tailspike proteins found in prophages from just 1 species
 i.e., only E. coli , only S. enterica , etc.). Ho w ever, a small fraction
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Figure 3: Association of tailspike protein clusters with bacterial serotypes. Networks showing the str ongl y associated serotypes (colored circles) with 
tailspike protein clusters (white circles). The size of the circle indicates the number of serotypes or tailspike pr oteins. Ser otype circles with solid 
outlines r epr esent K-antigens and circles with dashed outlines r epr esent O/OC-antigens. Width of the lines indicates the fr action of vOTUs containing 
that tailspike protein that support the association. Panels show the tailspike–serotype associations for (A) E. coli , (B) Klebsiella , and (C) Acinetobacter . 
Insets in panels A and B show the surface pol ysacc haride structur es associated with example mixed ser otype clusters. 
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as made up of a mixture of tailspike proteins from prophages
ound in E. coli and S. enterica (26/41) or E. coli and K. pneumo-
iae (15/41) genomes ( Supplementary Table S3 ). These mixed-
pecies tailspike clusters were relatively rare but were all sup-
orted by at least 2 genomes from each species, reducing the
hance that these were due to contamination or errors in the
enomes. 

The identification of similar tailspike proteins in E. coli and
lebsiella genomes with the same K-antigen suggests that the
elationship between serotype and tailspike protein serves as
 pivotal determinant of the host range. Instances of horizon-
al gene transfer of the K-antigen–specific loci between E. coli
nd Klebsiella strains have been documented numerous times
 65 ], providing a possible route for phages to become asso-
iated with new host species. When examining the tailspike
rotein clusters that contained tailspike fr om pr opha ges fr om
ifferent species, it was found that, despite their shared tail-
pike proteins, the prophages were distinct from each other
Fig. 4 ). When examined in the context of their host serotypes,
t was found that these differ ent pha ges fr om differ ent species
ere associated with the same or similar serotypes . T he E. coli

enomes containing these tailspike proteins were predicted to
av e ser otypes that wer e the same as the Klebsiella strains in
he cluster in the instance of the K47 (Fig. 4 A) and K63 (Fig. 4 B)
erotypes or possessed a similar glycan backbone in the instance
f the K13 and K2 serotypes (Fig. 4 B and Fig. 3 B, Supplementary
able S3 ). 

Examples of similar tailspike pr oteins wer e also observ ed in
. coli and Salmonella genomes, suggesting that they shared sim-
lar O-antigens. E. coli and Salmonella strains have also been found
o possess similar O-antigen serotypes due to their evolution-
ry relatedness and horizontal gene transfer [ 66 , 67 ]. One tail-
pike protein cluster was found in prophages associated with E.
oli genomes predicted to have the O23 serotype and Salmonella
enomes predicted to have the O51 serotype (Fig. 4 D), which have
een found to have highly similar glycan backbone structures
ith slightl y differ ent side gr oups ( Supplementary Fig. S9A ) [ 68 ].
dditionall y, the E. coli ser otypes O118 and O151 ar e similar to the
almonella serotype O47, differing by only the linkages between
-acetyl-beta-D-glucosamine and ribitol sugar residues [ 69 ], sug-
esting that the tailspike proteins observed in the phages asso-
iated with these bacteria could interact with both polysaccha-
ide types (Fig. 4 E, Supplementary Fig. S9B ). Another set of phages
as found to be associated with the Salmonella O45 serotype and
. coli OX13 serotype (Fig. 4 F). While the structure for the OX13
urface O-pol ysacc haride is not known, the corresponding gene
oci of the E. coli and Salmonella genomes were found to be highly
imilar in gene orders and gene identities, with over 50% iden-
ity observed in 13 of 14 gene pairs, suggesting a likely rela-
ionship between the pol ysacc haride structur es ( Supplementary
ig. S9C ). 

These cross-species correlations between tailspike proteins
nd serotypes offer additional proof of the strong links between
ailspike proteins and bacterial surface pol ysacc harides . T his dy-
amic also illustrates the ongoing phage–host arms race: bac-
eria can e volv e their surface r eceptors thr ough horizontal gene
r ansfer, while pha ges hav e the flexibility to modify their receptor-
inding proteins to target these newly adapted bacterial hosts.
dditionally, the association of tailspike proteins with different
er otypes that hav e structur all y similar pol ysacc harides pr ovides
vidence that a limited degree of cross-reactivity between tail-
pike proteins and polysaccharides may contribute to the in-
reased host range of phages. 
omain swapping in the tailspike proteins 

xtensive domain swapping between tailspike protein was ob-
erved in all 5 species. Tailspike proteins are commonly classi-
ed into an N-terminal head domain and a C-terminal domain

Fig. 5 A), with the C-terminal domain encompassing a beta-helix
omain that is responsible for both receptor binding and de-
ol ymer ase activity [ 20 , 70 ]. Pr e vious studies hav e r eported nat-
r all y occurring domain swapping in phages based on the pres-
nce of highly similar domains [ 20 , 71 ]. Leveraging the large
ataset of tailspike pr otein, a compr ehensiv e assessment of do-
ain sw apping w as performed. To convincingly identify these po-

ential s waps , one of the domains is r equir ed to r emain within a
ighly similar cluster (at 95% identity), while the other domain

s placed in a distinct cluster, e v en if its identity threshold is sig-
ificantly lo w er (at 30% identity). Evidence of N- and C-terminal
omain swaps was observed in all 5 species, with a majority of
he observ ed swa ps being in tailspike pr oteins associated with E.
oli or Klebsiella genomes . T his observation can be attributed to
he higher abundance of tailspike proteins identified in these 2
pecies, emphasizing the adv anta ges offer ed by lar ge datasets. 

For the tailspike proteins that displayed putative domain
 waps , an additional in vestigation was carried out to explore the
elationship between their associated serotypes and the clus-
ering of their N-terminal and C-terminal domains (Fig. 5 B–D,
upplementary Fig. S10 ). Within the 95% identity cluster, it was
bserved that all tailspike proteins sharing the same C-terminal
luster were associated with the same serotype. Ho w ever, this
onsistent serotype association was not observ ed acr oss all N-
erminal clusters. At the 30% identity le v el, the C-terminal do-

ain clusters continued to exhibit a notabl y str onger association
ith serotypes compared to the N-terminal domain clusters. For

xample, at the 30% identity le v el, the C-terminal domain clus-
er, C_cl30_83, containing 274 vOTUs in Klebsiella exclusiv el y cor-
esponded to 2 serotypes, whereas a N-terminal domain cluster,
_cl30_15, with a similar amount of vOTUs (215) in Klebsiella at the

ame identity le v el originated fr om a tailspike pr otein associated
ith 20 ser otypes. Anal ysis of the serotype cluster entropy associ-
ted with each N-terminal and C-terminal domain corr obor ated
hese tr ends, r e v ealing that C-terminal domains wer e c har acter-
zed by significantly lower le v els of ser otype div ersity compar ed
o N-terminal domains in all the species (Fig. 5 E). 

pplying phage–host specificity predictions in 

hage therapy cases 

o demonstrate the predictive po w er of our data in aiding
 eal-world pha ge host specificity determination in phage ther-
p y, w e compiled a dataset consisting of 173 cases for the 5
athogens . T hese cases were extracted from scientific literature
nd encompassed phage–host infection experiments, as well as
reclinical and clinical phage therapy trials for which both phage
nd bacterial genomic data, or host serotype information, were
vailable ( Supplementary Table S4 ). Within this dataset, tailspike
r oteins wer e identified in the pha ge genomes fr om 92 cases.
emarkably, 64 of these cases (accounting for 69.57%) exhibited
ssociations consistent with our prediction. When examining just
he preclinical and clinical phage therapy studies, 22 of 66 phages
ontained tailspike proteins. In 16 of these cases (accounting
or 72.73%), the bacterial host serotypes were in alignment with
ur findings. Collectiv el y, these data suggest that the specific
ssociation between tailspike proteins and host serotypes can be
sed to r eliabl y guide the prediction of phage–host specificity in
ha ge ther a py a pplications. 

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae017#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae017#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae017#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae017#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae017#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae017#supplementary-data
https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giae017#supplementary-data
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Figure 4: Highly similar tailspike proteins in phages targeting different host species. Prophage genomes derived from different host species with highly 
similar tailspike proteins are shown for (A–C) E. coli and K. pneumoniae strains and (E, F) E. coli and S. enterica strains. Genes are colored based on their 
annotations using Pharokka with tailspike proteins shown in red, and the amino acid identities of the genes are shown as the shaded regions between 
genes. 
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A successful example of phage therapy being used can be seen 

in the phage AbTP3phi1, which was effective against a multidrug- 
resistant A. baumannii infection with the K116 serotype [ 72 , 73 ].
When compared to the set of tailspike proteins identified in this 
stud y, the tailspik e protein from the AbTP3phi1 phage (OL770263) 
was found to be homologous to 2 clusters of tailspike proteins as- 
sociated with the Acinetobacter K37 (38.0% amino acid identity) and 

K116 (37.4% amino acid identity) serotypes (Fig. 3 D), 2 of the r ar er 
serotypes being predicted for only 2 (0.022%) and 26 (0.282%) of 
the 9,217 Acinetobacter genomes anal yzed, r espectiv el y. The K116 
serotype has been suggested to be a hybrid of genes from the 
Acinetobacter K37 and K14 serotype-specific loci, and the polysac- 
c haride structur es wer e found to hav e similar structur es [ 74 ]. This 
r esult demonstr ates the pr edictiv e ca pacity of tailspike pr otein–
ser otype associations, whic h stems fr om the compr ehensiv e and 

lar ge-scale anal ysis of the dataset. The knowledge about tailspike 
pr oteins can subsequentl y be emplo y ed to e v aluate the viability 
of specifically targeting a phage to w ar d a particular serotype, of- 
fering a resource to optimize the search process in phage therapy 
and rational phage engineering. 

Another interesting example lies in the pha ge–host r ange ex- 
periment for bacteriophage CB A120, which w as reported to pos- 
sess 4 tailspike proteins [ 16 ]. CBA120 infects S. enterica ser ov ar 
Minnesota (also known as the Salmonella O21-antigen) due to the 
function of tailspike protein (TSP) 1. Meanwhile, TSP2, TSP3, and 

TSP4 hydr ol yze the O157, O77, and O78 E. coli O-antigens, respec- 
tiv el y. Notabl y, all 4 of these tailspike proteins were accurately 
identified by SpikeHunter, and the top predicted serotypes for 
eac h pr otein matc hed the experimental findings . T he percentages 
of the E. coli O157-, O77-, and O78-antigens and the Salmonella O21- 
antigen in our database ar e r elativ el y low, 0.725%, 0.767%, 2.124%,
and 0.403%, r espectiv el y, indicating that the accur ate identifica- 
tion of these serotypes is unlikely to be due to random chance.
This underscores the significance of our study in streamlining the 
scr eening pr ocess for effectiv e pha ges in ther a peutic a pplications.
iscussion 

hr ough this lar ge-scale, m ultispecies genomic anal ysis, we hav e
emonstrated the strong association of tailspike proteins and bac- 
erial surface pol ysacc haride r eceptors at the strain level. By ap-
l ying pr otein langua ge models , we ha v e de v eloped a sensitiv e a p-
r oac h for the detection of tailspike proteins, something that has
een challenging due to the sequence diversity seen in these pro-
eins. Our use of pr opha ge-encoded tailspike proteins provides a
ay to examine confirmed tailspike–serotype associations across 

housands of genomes without the need for isolating phages and
acterial strains . T hese factors ha v e r esulted in a ric h dataset that
a ptur es pha ge and ser otype div ersity and can serv e as a r esource
or future phage research. 

Pha ge tailspike pr oteins ar e crucial in determining phage–
ost range and in degrading pathogen pol ysacc harides, as they
erve dual functions as both phage receptor-binding proteins and 

ha ge-encoded depol ymer ases . Despite their significance , there
as been a lack of computational tools specifically tailored for
he effective and precise identification of tailspike proteins. Exist- 
ng computational methods and pipelines, such as PhageRBPde- 
ect [ 71 ], PhageHostLearn [ 75 ], and Bacteriopha geHostPr ediction
 12 ], are designed to recognize phage receptor-binding proteins.
imilarly, tools like DePP [ 76 ] and PhageDPO [ 77 ] aim to identify
ha ge-encoded depol ymer ases in pha ges. Ho w e v er, these tools fail
o differentiate tailspike proteins from the other phage-encoded 

epol ymer ases and receptor-binding proteins that they detect.
r aditionall y, the detection of tailspike proteins has not posed a
ignificant c hallenge, primaril y because they possess this unique
tructur al featur e of the single-str anded beta-helix domain. How-
 v er, this identification process has largely been manual, involv-
ng analyses of gene annotations, genomic context, and predicted 

tructures . T his labor-intensive approach has restricted its appli-
ation to small-scale studies and to specific bacterial species [ 9 ,
0 , 36 , 78 ]. Consequently, SpikeHunter is a pioneering tool, being
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Figure 5: Domain swapping in tailspike proteins. (A) Example domain partitioning of tailspike protein (PDB: 2XC1) and diagram illustrating domain 
sw apping betw een hypothetical tailspik e proteins. Putati ve domain swapping in tailspike proteins from (B) E. coli , (C) Klebsiella , and (D) Acinetobacter are 
shown as connections between the N-terminal and C-terminal domains clustered at different amino acid identities. Bands connecting N- and 
C-terminal domains are colored based on the serotype of the associated bacterial genomes. (E) Boxplots comparing the entropy of serotypes observed 
in bacterial genomes with N- and C-terminal domains clustered at 95% from proteins with potential domain swapping. Significance of N- and 
C-terminal entropy difference based on a Wilcoxon rank-sum test is shown for each plot. 
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the first computational tool specificall y de v eloped for the r a pid 

and direct identification of tailspike proteins. By focusing on this 
critical subset of pha ge-encoded pr oteins, SpikeHunter fills a sig- 
nificant gap in the field of pha ge–host inter action r esearc h, offer- 
ing a novel solution for large-scale studies. 

Pha ge ther a py has been proposed as an ideal tool for com- 
bating antibiotic resistance [ 13 ] and suppressing disease-related 

members of the microbiome [ 79 , 80 ], but the application of phage 
ther a py has consistentl y been limited by the ability to identify 
phages that would be effective against specific bacterial infec- 
tions [ 13 ]. The pr edictiv e po w er sho wn b y our data for 70% of
the pha ge ther a py–r elated trials, especiall y the tailspike pr otein 

specific to Acinetobacter K116 in the phage AbTP3phi1 that was 
used in a successful phage therapy application [ 72 ], as well as 
for the multiple cross-species serotype-specific tailspike proteins 
in the E. coli phage CBA120 [ 16 ], demonstrates the utility of these 
data in guiding the phage screening or phage protein selection in 

the futur e. Our r esults also demonstr ate that domain swa pping 
is common in tailspike proteins, and the modular nature of tail- 
spike proteins has allo w ed them to be engineered to alter their 
specificity [ 81 ]. Because isolating effective natural phages can be 
time-consuming, engineering tar geted pha ges could be an effec- 
tiv e str ategy for combating new antimicrobial-resistant bacteria.
This process and the application of tailspike proteins as antimi- 
crobial compounds can be significantly enhanced by these results,
leading to more efficient and effective biomedical applications of 
phages. 

Tailspike proteins also have a promising future as molecu- 
lar tools in the glycosciences . T he study of bacteriophages and 

pha ge–host inter actions has led to the discovery of specialized 

pol ymer ases [ 82 ], ligases [ 82 ], restriction enzymes [ 83 ], and the 
CRISPR-Cas9 [ 84 ] system, which has revolutionized molecular bi- 
ology. The pol ysacc haride-tar geting natur e of tailspike pr oteins 
makes them ideal candidates as new tools to study gl ycans. Gl y- 
can profiling is inherently difficult due to the structural complex- 
ity , heterogeneity , lack of templates, and the limited availability of 
high-thr oughput anal ytical methods [ 85, 86 ]. The depol ymer ase 
activity exhibited by tailspike proteins presents the potential for 
their utilization analogous to restriction enzymes in DNA diges- 
tion, facilitating the breakdown of polysaccharides into smaller 
fr a gments amenable to anal ysis, suc h as linka ge anal ysis. Mor e- 
ov er, tailspike pr oteins hav e demonstr ated utility in the de v elop- 
ment of pathogen biosensors reliant on the recognition of distinct 
glycans [ 11, 87, 88 ], thus suggesting the possibility of expanding 
their functionality to establish novel glycan typing microarra ys . 

This a ppr oac h to identifying tailspike pr otein associations has 
some disadv anta ges that highlight persistent ga ps in the field.
First, ser otyping pr ediction tools ar e primaril y focused on com- 
mon human pathogens, limiting these results to these species of 
interest and underscoring the need for advanced serotype predic- 
tion tools that can be generalized to other species. Additionally,
various other types of polysaccharides that were not considered 

in this analysis are presented on the cell surface and have been 

shown to be receptors for some phages, including enterobacte- 
rial common antigen [ 9 ] and cellulose [ 89 ]. Non-tailspike phage 
r eceptor-binding pr oteins, whic h also play r oles in binding to bac- 
terial cell surface sugars and proteins [ 90 ], are important con- 
sider ations for futur e studies inv estigating pha ge–host inter ac- 
tions and likely explain the phage therapy cases that our asso- 
ciations did not matc h. Finall y, it is important to note that most 
clinical bacterial samples and phages used in pha ge ther a py hav e 
not been genetically sequenced. This lack of data complicates 
the identification of the organisms involved and limits our under- 
tanding of the genetic factors that determine phage–host inter- 
ctions . T hese limitations highlight gaps in the understanding of
oth bacterial serotypes and phage biology that will be important
spects of future research. Expanding this work to include free
hages and to account for other bacterial species will enhance
he associations and provide important context to the results and
acilitate their application in biomedical contexts. Overall, this 
tudy provides an essential foundation for the future study of bac-
eriophage host specificity and the future use of phages and tail-
pike proteins in a variety of fields. 

dditional Files 

able S1. Tailspike protein clusters at different identities. 
able S2. Tailspike protein cluster to serotype associations. 
able S3. Cross-species tailspike protein associations. 
able S4. Phage host specificity prediction in pre-clinical and clin-

cal cases in phage therapy. 
igure S1: SpikeHunter validation performance metrics per 
poch. 
igure S2: φKp24-like jumbo pr opha ge. 
igure S3: E. coli phages with 24 serotypes. Diagram of 24 similar E.
oli from the same vO TU that ha ve distinct tailspike proteins and
re associated with distinct serotypes. 
igure S4: High ser otype div ersity within a tailspike pr otein clus-
er. 
igure S5: Purity of serotypes associated with 60% identity tail-
pike protein clusters. 
igure S6: Tailspike protein serotype networks for five species, in-
luding serotype and tailspike protein cluster labels for nodes. 
igure S7: Tailspike protein to serotype networks for Acinetobacter 
nd P. aeruginosa . 
 igure S8: Example ph ylogenetic distributions of tailspike pro-
eins and serotypes. 
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bbreviations 

CC: Matthe w’s corr elation coefficient; OC: outer cor e; PRAUC:
rea under the precision–recall curve; TSP: tailspike protein. 

vailability of Supporting Source Code and 

equirements 

roject name: Spik eHunter: A Dee p Learning Tool for Identifying
hage Tailspike Proteins 

Pr oject homepa ge: https:// github.com/ nlm- irp- jianglab/ 
pik eHunter (Spik eHunter model and code) 

Operating system(s): Linux or other Unix-like operation 

ystems 
Pr ogr amming langua ge: Python 

Other r equir ements: See https:// github.com/ nlm- irp- jianglab/ 
pikeHunter/ blob/ main/ environment.yml for details. 

License: MIT 

RRID:SCR _ 024831 
biotools Id: spikehunter 
Snapshots of our code are also archived in Software Heritage 

 23–25 ]. 

https://github.com/nlm-irp-jianglab/SpikeHunter
https://github.com/nlm-irp-jianglab/SpikeHunter/blob/main/environment.yml
https://scicrunch.org/resolver/RRID:SCR_024831
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