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Abstract

Background: Phage therapy, reemerging as a promising approach to counter antimicrobial-resistant infections, relies on a comprehen-
sive understanding of the specificity of individual phages. Yet the significant diversity within phage populations presents a consider-
able challenge. Currently, there is a notable lack of tools designed for large-scale characterization of phage receptor-binding proteins,
which are crucial in determining the phage host range.

Results: In this study, we present SpikeHunter, a deep learning method based on the ESM-2 protein language model. With Spike-
Hunter, we identified 231,965 diverse phage-encoded tailspike proteins, a crucial determinant of phage specificity that targets bacterial
polysaccharide receptors, across 787,566 bacterial genomes from 5 virulent, antibiotic-resistant pathogens. Notably, 86.60% (143,200)
of these proteins exhibited strong associations with specific bacterial polysaccharides. We discovered that phages with identical tail-
spike proteins can infect different bacterial species with similar polysaccharide receptors, underscoring the pivotal role of tailspike
proteins in determining host range. The specificity is mainly attributed to the protein’s C-terminal domain, which strictly correlates
with host specificity during domain swapping in tailspike proteins. Importantly, our dataset-driven predictions of phage-host speci-
ficity closely match the phage-host pairs observed in real-world phage therapy cases we studied.

Conclusions: Our research provides a rich resource, including both the method and a database derived from a large-scale genomics
survey. This substantially enhances understanding of phage specificity determinants at the strain level and offers a valuable frame-

work for guiding phage selection in therapeutic applications.
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Introduction

Phage therapy is gaining renewed interest as a solution to antimi-
crobial resistance, which is reflected by the increased number of
case reports describing the use of phage treatments [1-4]. Under-
standing phage-host interactions and the determinants of phage
host specificity at the strain and species level is crucial for improv-
ing phage therapy and applying phage proteins in biotechnology
[5-7]. Extensive work has been done to understand what bacte-
ria specific phages can infect and which proteins are involved in
this process [8-10]. Phage receptor-binding proteins, in particular,
are gaining popularity due to their direct interaction with host re-
ceptors and their potential to streamline the selection of effective
phages for therapy, a key bottleneck in its broader application [11-
13].

Tailspike proteins are a type of phage receptor-binding protein
that specifically recognizes and breaks down bacterial cell sur-
face polysaccharides, such as the capsular polysaccharides (K-
antigens), the O-specific polysaccharides of the lipopolysaccha-
ride (O-antigens), and the outer core (OC) of the lipooligosac-
charide (OC-antigen) to initiate infection [14-17]. They have also
shown promise as antimicrobials that can be used to sensitize re-
sistant strains [18] and degrade biofilms [19]. Given their central
role in phage-host interactions, many studies have attempted to
understand the associations of tailspike proteins with bacterial

serotypes, the types of polysaccharides on the bacterial cell sur-
face. Recent studies have shown that the host range of Klebsiella
phages is generally restricted and have shed light on the role of
phage tailspike proteins in defining this specificity [9]. Similarly,
other studies related to Ackermannviridae and Escherichia viruses
have demonstrated that tailspike proteins are tightly associated
with host serotype and that recombination of tailspike protein do-
mains may be a key driver in tailspike protein evolution [9, 10, 20].

Experimental phage host-range determination is laborious and
time-consuming. While these studies have provided valuable ex-
amples of the association of phage receptor-binding proteins with
specific host receptors, their scale and scope, often focusing on
single bacterial species and fewer than a hundred phages, lim-
its their generalizability and predictive power. Computational
approaches, which predict host ranges utilizing genomic informa-
tion [12], offer a significant advantage. Methods employing large-
scale genomic data grounded in phage host-range mechanisms
can provide enhanced sensitivity and predictive power at finer
taxonomic resolutions, thereby supporting future phage therapy
initiatives.

In this study, we conducted a large-scale, multispecies genomic
analysis to better understand the role of tailspike proteins in
phage host specificity at the strain level. Utilizing a deep learning-
based method, SpikeHunter, we identified tailspike proteins
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specific to serotypes from 5 prevalent human pathogens and
created a comprehensive phage-host association database. Our
findings indicate that host range is primarily governed by the
specificity of the tailspike protein, enabling phages with identical
tailspike proteins to infect diverse bacterial species sharing the
same serotypes. This specificity is mainly attributed to the C-
terminal domain, as host specificity was observed to strictly follow
this domain during extensive domain swapping in tailspike pro-
teins. Furthermore, our dataset-driven phage-host specificity pre-
dictions align well with established phage-host pairs employed
in real-world phage therapy cases. By expanding the knowledge
of the molecular basis of phage host specificity, our research en-
hances both the applications and the engineering of phages to
target new strains [21] or circumvent bacterial resistance [22],
thereby advancing phage therapy. The analysis performed in this
study is provided at [23]. The expansive dataset of tailspike pro-
teins and the SpikeHunter model are available at TailspikeDB [24]
and via GitHub [25], respectively, which can guide future phage
applications and predictions on phage host range.

Methods

Training and validation data

A total of 3,659 bacteriophage genomes were downloaded from
the INPHARED database (v1.7) [26]. This collection of proteins was
split into tailspike and non-tailspike phage protein datasets. A
possible tailspike protein dataset was generated based on key-
word searches and comparisons to other annotated viral pro-
teins in the NCBI nr database using BlastP, PDB using SCOP (RRID:
SCR_007039) [27], and the viral ortholog databases, PHROG [28],
pVOG [29], ViPhOG [30], eggNOG viral ortholog groups (RRID:SCR_
002456) [31], and VOGDB [32], using HMMER (RRID:SCR_005305).
Proteins that were annotated as tailspike, tail fiber, or receptor
binding were included in the candidate tailspike dataset along
with proteins whose top hit was annotated as tailspike proteins in
other databases. The set of candidate tailspike proteins were then
clustered at 70% identity using CD-HIT (RRID:SCR_007105) [33,34]
and their structures were predicted using AlphaFold v2.3.2 [35].
The structures were then manually curated to identify a final set
of 1,912 tailspike proteins based on the presence of the distinctive
beta-helix receptor-binding domain. The remaining 200,732 non-
tailspike proteins (excluding those classified as part of the “un-
known” category in INPHARED) were included in the non-tailspike
dataset.

Independent testing data

The independent dataset was compiled using a recently anno-
tated dataset of 100,081 proteins from 96 phages that infect
403 strains of the Escherichia genus [36]. Within this dataset,
81 curated tailspike proteins were designated as positive sam-
ples, and the rest of the proteins were categorized as negative
samples.

Model architecture

The SpikeHunter (RRID:SCR_024831) was developed using the
PyTorch framework (RRID:SCR_018536) [37]. First, the phage se-
quences are first tokenized and transformed into numerical vec-
tors using the batch_converter function in the ESM python package
[38]. The sequences are then embedded as 1,280 length represen-
tations using a pretrained transformer protein language model
ESM-2 (esm2_t33_650M_URS50D) [39]. The sequence representa-
tions are fed into a 4-fully-connected layer network with 1280,

568, 128, and 2 nodes, respectively. The output from the last layer
is converted into a probability representing each sequence being
a tailspike protein or not with a softmax activation function. The
SpikeHunter model and code is available on GitHub [25].

We further conducted ablation studies on SpikeHunter by alter-
ing its modules to analyze the effect of the different components.
The modifications included (i) removing the 568-neuron hidden
layer from the fully connected layers; (ii) removing the 128-neuron
hidden layer from the fully connected layers; (iii) replacing the
pretrained ESM-2 encoder, used for input sequence embedding,
with the SeqVec encoder [40]; and (iv) integrating dropout layers
with a 0.2 dropout ratio into each linear layer of the fully con-
nected layers. After these architectural changes, the models were
retrained. Their performance on the validation dataset was then
evaluated using metrics such as accuracy, precision, recall, speci-
ficity, F1-score, and Matthew’s correlation coefficient (MCC). These
modified models are available on GitHub at [23].

Training and validation of the deep learning
model

To train and validate the SpikeHunter, the manually curated set
of phage proteins, consisting of both tailspike proteins and non-
tailspike proteins, was first clustered into 20,274 clusters at 30%
identity using CD-HIT [34]. Each cluster contained only tailspike
or non-tailspike proteins, with no mixed clusters being observed
in the dataset. The sequences were then divided into training, val-
idation, and testing datasets in a ratio of 3:1:1 using the Stratified-
GroupKFold function in the Scikit-learn python package [41], result-
ing in a training set of 122,506 proteins (comprising 1,023 posi-
tive samples and 121,483 negative samples belonging to 12,170
clusters), a validation set of 40,838 proteins (comprising 343 posi-
tive samples and 40,495 negative samples belonging to 4,054 clus-
ters), and a testing set of 39,300 proteins (comprising 546 pos-
itive samples and 38,754 negative samples belonging to 4,050
clusters). The model training was performed with the cross-
entropy loss function and the Pytorch implementation of the
Adam optimizer, with the parameters of the ESM-2 model frozen.
The training was halted when the model’s performance on the
validation dataset did not improve for 3 consecutive epochs. The
model with the lowest validation loss was then used for testing
and prediction.

Identification of tailspike proteins in bacterial
genomes

A total of 787,566 genomes of 5 common pathogens, Escherichia
coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella en-
terica, and Acinetobacter baumannii, were obtained from the NCBI
Pathogen Detection database [42], downloaded on 2 April 2023
[43]. Prophage regions were predicted in the pathogen genomes
using VIBRANT (version 1.2.0) with default parameters to identify
phages within the bacterial genomes. The protein sequences of
the phages with lengths greater than 200 amino acids were then
extracted, and SpikeHunter was used to classify them as either
tailspike or non-tailspike proteins. Only proteins with greater than
50% probability of being a tailspike protein were positive hits for
tailspike proteins. All identified tailspike protein IDs with their cor-
responding clusters at various protein identities are provided at
[23].

Bacterial genome serotyping

Serotype prediction for the 5 analyzed microbial species was
performed using a variety of species-specific tools. O-antigen
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serotypes were predicted for E. coli using ECTyper [44], Serotype-
Finder [45], and fastKaptive [46]. Serotypes were grouped into
serogroups according to Iguchi et al. [47]. K-antigen prediction
for E. coli genomes was done using fastKaptive [46]. K. pneumo-
niae K- and O-antigen serotypes were inferred using Kaptive (RRID:
SCR_024046) [48] and fastKaptive [46]. A. baumannii K-antigen
and OC serotypes were predicted using Kaptive [48]. P. aerugi-
nosa O-antigen serotypes were predicted using PAst [49]. O-antigen
serotypes were predicted for S. enterica using SeqSero2 [50] and
fastKaptive [46]. All tools were run using default settings. Results
from Kaptive with match confidence scores of “None” and results
from fastKaptive with best match coverages lower than 90 were
excluded from the downstream analysis. To facilitate the compar-
ison of serotypes between species, shared serotypes were merged
and consistently named for the set of K. pneumoniae and E. coli K-
antigens and the set of E. coli and S. enterica O-antigens. Common
serotypes between K. pneumoniae and E. coli were identified by pre-
dicting serotypes in the K. pneumoniae genome using the fastKap-
tive tool. The predicted K. pneumoniae serotypes from Kaptive and
fastKaptive were then used to map the shared serotypes between
the 2 species. The same procedure was followed for identifying
common serotypes between S. enterica and E. coli, but with the S.
enterica genomes being annotated using SeqSero2 and fastKaptive
to provide the mapping to the E. coli genomes.

Associating tailspike proteins with serotypes

Tailspike protein sequences were hierarchically clustered at 30%,
40%, 50%, 60%, 70%, 80%, 85%, 90%, and 95% identities using
cd-hit v.4.8.1 [34]. The tailspike protein clusters at different lev-
els were associated with the vOTUs (viral Operational Taxonomic
Units) they were found in and the serotypes of the genomes that
the vOTUs were in. In this study, a vOTU is defined as a cluster
that contains phage genomes with an Average Nucleotide Iden-
tity (ANI) > 95% and an alignment coverage of shorter sequence >
85%. When encountering multiple instances of the same 95% tail-
spike protein cluster, vOTU, and serotype within the dataset, only
1 instance was retained for subsequent analysis to eliminate re-
dundancy. An overall network of tailspike protein clusters at 60%
identity and serotypes was then generated with the links between
them being determined by the vOTUs. Associations between the
tailspike protein clusters at 60% identity and serotypes were clas-
sified into 3 categories: “highly confident,” “confident,” and “un-
certain.” “Highly confident” associations were tailspike to serotype
pairs that were supported by at least 90% of the vOTUs containing
that 60% tailspike protein cluster for tailspike proteins with more
than 4 vOTU connections or that were supported by all vOTUs
for tailspike protein clusters with less than or equal to 4 vOTUs.
“Confident” associations were tailspike to serotype pairs that were
supported by 10% to 90% of the vOTUs with the tailspike protein
cluster, and the remaining associations were classified as “uncer-
tain.” More information regarding the assignment of serotypes to
a tailspike protein cluster can be found within the code hosted
on GitHub [23]. A database featuring tailspike proteins and their
associations with serotypes is accessed at TailSpikeDB [24].

Identification of domain swapping between
tailspike proteins

An all-by-all BlastP [51] search was performed to compare all
nonredundant tailspike protein sequences, and the hits were fil-
tered using an e-value cutoff of le-8, identity threshold of 60%,
and a coverage range of 10% to 90% of the sequence. Candidate
domain swapping was found by identifying proteins that aligned
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to at least 2 other proteins that cumulatively covered at least
90% of the original query sequence. Breakpoints for the N- and
C-terminal domains were determined by computing the average
alignment start and end positions from all of the alignments to
each query tailspike protein. The domain sequences were then ex-
tracted and clustered using psi-cd-hit v.4.8.1 at 30% and 95% iden-
tity thresholds [52]. Domain swapping was only considered plau-
sible if they were validated by multiple proteins with the same do-
main at 95% identity while having different versions of the other
domain at 30%. Circlize v0.4.15 was used to visualize the N/C-
terminal domain swapping for each species [53].

The collection of phage host range determination
trials and phage therapy preclinical and clinical
cases

The phage host range determination trials were collected from
PhReD [54, 55] and VHRdb [56, 57] databases. The preclinical trials
were collected from a list of trials in Gémez-Ochoa et al. [58] while
the clinical cases were collected from case studies listed at [59]
and cases reported in Green et al. [60]. The phage genomes and
bacterial genomes or serotype information were extracted from
literature or searched in GenBank. The missing bacterial serotypes
were inferred by the serotype tools previously mentioned.

Results

Detecting sequence-divergent tailspike proteins
in phages using deep learning

To investigate the association between tailspike proteins and bac-
terial surface polysaccharide antigens, we first developed a deep
learning method named SpikeHunter to identify tailspike proteins
(Fig. 1A). SpikeHunter was built on the ESM-2 large protein lan-
guage model [39] to embed a protein sequence into a represen-
tative vector and predict the probability of that protein being a
tailspike protein using a fully connected 3-layer neural network
(Fig. 1B). A reference set of 1,912 tailspike protein sequences and
200,732 non-tailspike protein sequences was curated from the IN-
PHARED database [26]. The labeled protein sequences were then
partitioned into training, validation, and testing datasets at a ra-
tio of 3:1:1. This partition was conducted to preserve an equivalent
proportion of positive samples across each set and to ensure that
no sequence within a particular set displayed over 30% identity
with a sequence in another set (Table 1).

Early stopping was adopted to stop training once the model per-
formance was no longer improved on the validation dataset for 3
consecutive epochs to avoid overfitting (Supplementary Fig. S1).
Evaluation of the model on the testing dataset demonstrated that
SpikeHunter was accurate and sensitive, achieving an Fl-score
of 0.99991, precision of 0.99995, recall of 0.99987, specificity of
0.99634, an MCC of 0.99352, and the area under the precision-
recall curve (PRAUC) of 0.99360 (Fig. 1C). Evaluated on an inde-
pendent testing set consisting of 100,081 phage proteins with 81
as positive samples [36], SpikeHunter achieved an Fl-score of
0.99985, precision of 1.0, recall of 0.99970, specificity of 1.0, an
MCC of 0.98183, and the PRAUC of 0.99985.

We further investigated the effect of data imbalance on model
performance. To address this, we oversampled positive samples in
the training and validation datasets, creating a balanced dataset
with an equal number of positive and negative samples (N =
121,483 for each class for training and N = 40,495 for each class
for validation). The comparison between models trained on the
original dataset and the balanced dataset revealed minor changes
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Figure 1: Development of SpikeHunter. (A) Diagram showing the project workflow for the identification of tailspike protein and serotype associations.
(B) Organization of the training data and the model architecture for SpikeHunter. (C) The precision-recall curve with an area under the curve for
SpikeHunter evaluated on a testing dataset consisting of 39,300 phage proteins.

Table 1: Overview of training, validation, and testing dataset splits

Dataset Protein cluster Tailspike protein Non-tailspike protein Total protein

type count count, n (%) count, n (%) count Percentage
Training 12,170 1,023 (0.835%) 121,483 (99.165%) 122,506 60.5%
Validation 4,054 343 (0.840%) 40,495 (99.160%) 40,838 20.2%
Testing 4,050 546 (1.389%) 38,754 (98.611%) 39,300 19.4%

in performance, with a slight increase in F1-score by 1.182% and
a small decrease in specificity by 0.025% on the validation data.
These results suggest that data imbalance does not significantly
impact the model’s performance (Supplementary Table S1). Addi-
tionally, we evaluated model performance based on ablation stud-
ies. Adding dropout layers to, or removing the 568-neuron hid-
den layer from, the fully connected neural network resulted in
unchanged performance for SpikeHunter. However, removing the
128-neuron layer led to decreases in both Fl-score (by 0.145%)
and specificity (by 0.002%). This indicates the greater importance
of the 128-neuron layer compared to the 568-neuron layer in the

model, suggesting that the features extracted from this layer are
more useful in assisting the model with classification. We also
substituted the pretrained ESM-2 model in SpikeHunter with an-
other pretrained model, SeqVec [40], which focuses less on struc-
ture, for embedding the input sequences. This substitution re-
sulted in more pronounced declines in performance metrics, with
a 6.59% reduction in F1-score and a 0.09% decrease in specificity.
This finding indicates that the ESM-2 encoder is a key contribu-
tor to SpikeHunter’s performance, suggesting that the structural
features of the tailspike protein are the key to reliable tailspike
protein identification (Supplementary Table S1).
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In summary, based on the testing results, we concluded that
SpikeHunter is an effective tool for tailspike protein identification
and utilized it in subsequent analyses.

Identification of 231,965 prophage-encoded
tailspike proteins from the genomes of 5
common pathogens

A total of 787,566 genomes from E. coli, P. aeruginosa, Kleb-
siella, Acinetobacter, and Salmonella in the NCBI Pathogen Detec-
tion database were analyzed to predict prophages, prophage-
encoded tailspike proteins, and bacterial serotypes. Prophages
were predicted in 99.4% (783,033) of the genomes, resulting
in 8,434,760 prophage genomes containing 177,337,485 protein-
encoding genes across the entire dataset (Fig. 2A). The Spike-
Hunter was used to identify tailspike proteins within the
prophages, resulting in the identification of 231,965 tailspike
proteins in 10,676,658 proteins from 228,055 prophages, repre-
senting 17,932 vOTUs. Despite the relatively small fraction of
prophage genomes with a predicted tailspike protein (2.7%), 25.7%
of the bacterial genomes analyzed contained at least 1 prophage
genome with a predicted tailspike protein. Typically, only 1 tail-
spike protein was observed in each prophage genome, but 1.67%
of prophages (3,814 out of 228,055) were found to encode 2 or
more tailspike proteins (Fig. 2A). In the most extreme case, a sin-
gle prophage from a K. pneumoniae (GCA_003037395.1) genome
contained 14 predicted and was similar to the ¢Kp24 jumbo
phage, which is known for its highly branched tail structure
and expanded host range [61] (Supplementary Fig. S2). Over-
all, 208,900 prophages with tailspike proteins were identified in
182,937 bacterial genomes that also had a serotype prediction,
providing good coverage across the species and facilitating the
subsequent multispecies analysis of tailspike protein-serotype
associations.

While most vOTUs (15,022 of 16,535, 90.85%) only contained
tailspike proteins from 1 group (clustered at 60% identity), mul-
tiple examples (1,513 of 16,535, 9.15%) of vOTUs composed of
prophages with tailspike proteins belonging to different groups
were found. In 1 example, a vOTU associated with E. coli was
composed of prophages with 24 distinct tailspike proteins asso-
ciated with distinct predicted serotypes, including a mix of K-
and O-antigens (Supplementary Fig. S3). Similarly, a Klebsiella-
associated vOTU was identified where the 5 prophages each
had a distinct tailspike protein and were associated with dif-
ferent K-antigen serotypes (Fig. 2C). The differences in tailspike
protein and serotype associations for these otherwise similar
prophages provide further evidence of the importance of the
tailspike protein in driving host specificity. Similar tailspike pro-
teins were found in distinct vOTUs from the same genomes
(Fig. 2B). Despite the difference in genomic content and orga-
nization between these vOTUs, their shared bacterial host fur-
ther corroborates the link between the tailspike proteins and
serotypes.

The distribution of serotypes in relation to tailspike proteins
was then investigated. Bacterial serotypes were predicted for each
of the bacterial genomes, resulting in 182,937 bacterial genomes
that had a predicted serotype and at least 1 prophage with an
identified tailspike protein (Fig. 2D). The tailspike proteins were
subjected to hierarchical clustering analysis based on 30%, 60%,
and 95% identity thresholds, and their relationship with the cor-
responding host serotypes of their vOTUs was examined. While
the specific outcomes varied across different clusters, the pre-
dominant serotype associated with each cluster at the 30% iden-
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tity level generally exhibited consistency with its descendant
clusters at the 60% identity level. However, certain exceptions
were observed. For instance, the cluster labeled cl130_19 in Kleb-
siella, which emerged at the 30% identity level, displayed high
diversity within its descendant cluster at the 60% identity level
(Supplementary Fig. S4). Consequently, an identity threshold of
60% was proposed for all tailspike proteins to strike a reasonable
balance between cluster purity and reducing redundancy in the
results (Supplementary Fig. S5).

Prophage-encoded tailspike proteins are reliable
indicators of bacterial polysaccharide receptors

In the overall dataset, there were 1,180 unique tailspike protein
to serotype associations identified, of which 715 (60.59%) were
found to be strong associations (Fig. 3, Supplementary Fig. S6). A
majority of these strong associations were found from the E. coli
(Fig. 3A) and Klebstella (Fig. 3B) genomes, but multiple strongly as-
sociated tailspike-serotype pairs were still predicted for Salmonella
(Fig. 3C), Acinetobacter (Supplementary Fig. S7), and P. aeruginosa
(Supplementary Fig. S7), providing coverage across all 5 taxa
(Supplementary Table S2). These strongly associated tailspike—
serotype pairs consisted of 681 unique tailspike clusters and 322
unique serotypes (127 K-antigens and 195 O/OC-antigens). Most
of the strongly serotype-associated tailspike proteins were con-
nected to only 1 serotype (99.56%) (Fig. 3), suggesting that these
particular phage receptor-binding proteins typically target a nar-
row range of hosts.

The association between prophage tailspike proteins and bac-
terial serotypes cannot be attributed to phylogenetic relatedness
alone. The loci encoding bacterial surface polysaccharides, which
determine serotypes, are known to undergo frequent horizontal
gene transfer and exhibit a polyphyletic distribution of serotypes
[46]. For instance, the serotype 081 in E. coli is distributed among
multiple clades, and the tailspike protein cluster cl60_897 is found
to strictly follow the clades that encompass the 081 serotype. An-
other example pertains to the K57 serotype in Klebsiella, where the
associated tailspike cluster cl60_351 is present in 3 of the 4 main
K57 clades (Supplementary Fig. S8). These findings suggest that
the distribution of tailspike proteins aligns with serotypes rather
than the phylogeny of the bacterial hosts.

Tailspike protein clusters that were strongly associated with
multiple serotypes may be indicators of associations with other
polysaccharides or shared polysaccharide structures between the
serotypes. A few instances were observed in E. coli and Kleb-
siella where 1 tailspike protein was associated with 2 differently
annotated serotypes. While polysaccharide structural informa-
tion for many of the serotypes is not available, examples were
found for some of these components where the polysaccha-
ride structures were similar. One tailspike protein was found
to be associated with the E. coli 0123 and 0186 serotypes and
the S. enterica O58 serotype, which have all been found to
have a shared glycan backbone structure composed of 4-(N-
acetylalanyljamido-4,6-dideoxyglucose, N-acetyl-D-glucosamine,
2,5-dideoxy-2-(3-hydroxybutyramido)-glucose, and N-acetyl-D-
glucosamine [62] (Fig. 3A). Similarly, a tailspike protein was
strongly associated with the K2 and K13 serotypes in Klebsiella,
which both share a backbone structure of 2 D-glucose units and
a D-mannose unit [63] (Fig. 3B), and strains with these serotypes
have been observed to be infected by the same phages [64]. These
examples provide further evidence that tailspike proteins are as-
sociated with specific polysaccharide structures and can pro-
vide valuable information about their associated bacterial host
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redundant with the strain O-antigen typing.

serotypes. Larger components containing links between multiple
tailspike proteins and serotypes were observed for each of the 5
taxa (Fig. 3). While some of these associations may be biologically
relevant, these links are likely the result of either unpredicted
serotypes that are common to the genomes and associated with
the tailspike proteins or due to other factors like the association
of the tailspike proteins with polysaccharides that are not K- or
O/OC-antigens.

Highly similar tailspike proteins are found in
different host species with closely related surface
polysaccharides

Highly similar tailspike proteins (above 95% identity) were found
in prophages from genomes of different host species. Nearly all
the tailspike protein clusters (at 95% identity) were composed
of tailspike proteins found in prophages from just 1 species
(i.e., only E. coli, only S. enterica, etc.). However, a small fraction
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was made up of a mixture of tailspike proteins from prophages
found in E. coli and S. enterica (26/41) or E. coli and K. pneumo-
niae (15/41) genomes (Supplementary Table S3). These mixed-
species tailspike clusters were relatively rare but were all sup-
ported by at least 2 genomes from each species, reducing the
chance that these were due to contamination or errors in the
genomes.

The identification of similar tailspike proteins in E. coli and
Klebsiella genomes with the same K-antigen suggests that the
relationship between serotype and tailspike protein serves as
a pivotal determinant of the host range. Instances of horizon-
tal gene transfer of the K-antigen-specific loci between E. coli
and Klebsiella strains have been documented numerous times
[65], providing a possible route for phages to become asso-
ciated with new host species. When examining the tailspike
protein clusters that contained tailspike from prophages from
different species, it was found that, despite their shared tail-
spike proteins, the prophages were distinct from each other
(Fig. 4). When examined in the context of their host serotypes,
it was found that these different phages from different species
were associated with the same or similar serotypes. The E. coli
genomes containing these tailspike proteins were predicted to
have serotypes that were the same as the Klebsiella strains in
the cluster in the instance of the K47 (Fig. 4A) and K63 (Fig. 4B)
serotypes or possessed a similar glycan backbone in the instance
of the K13 and K2 serotypes (Fig. 4B and Fig. 3B, Supplementary
Table S3).

Examples of similar tailspike proteins were also observed in
E. coli and Salmonella genomes, suggesting that they shared sim-
ilar O-antigens. E. coli and Salmonella strains have also been found
to possess similar O-antigen serotypes due to their evolution-
ary relatedness and horizontal gene transfer [66, 67]. One tail-
spike protein cluster was found in prophages associated with E.
coli genomes predicted to have the 023 serotype and Salmonella
genomes predicted to have the O51 serotype (Fig. 4D), which have
been found to have highly similar glycan backbone structures
with slightly different side groups (Supplementary Fig. S9A) [68].
Additionally, the E. coli serotypes 0118 and O151 are similar to the
Salmonella serotype 047, differing by only the linkages between
N-acetyl-beta-D-glucosamine and ribitol sugar residues [69], sug-
gesting that the tailspike proteins observed in the phages asso-
ciated with these bacteria could interact with both polysaccha-
ride types (Fig. 4E, Supplementary Fig. S9B). Another set of phages
was found to be associated with the Salmonella 045 serotype and
E. coli OX13 serotype (Fig. 4F). While the structure for the OX13
surface O-polysaccharide is not known, the corresponding gene
loci of the E. coli and Salmonella genomes were found to be highly
similar in gene orders and gene identities, with over 50% iden-
tity observed in 13 of 14 gene pairs, suggesting a likely rela-
tionship between the polysaccharide structures (Supplementary
Fig. S9C).

These cross-species correlations between tailspike proteins
and serotypes offer additional proof of the strong links between
tailspike proteins and bacterial surface polysaccharides. This dy-
namic also illustrates the ongoing phage-host arms race: bac-
teria can evolve their surface receptors through horizontal gene
transfer, while phages have the flexibility to modify their receptor-
binding proteins to target these newly adapted bacterial hosts.
Additionally, the association of tailspike proteins with different
serotypes that have structurally similar polysaccharides provides
evidence that a limited degree of cross-reactivity between tail-
spike proteins and polysaccharides may contribute to the in-
creased host range of phages.

Domain swapping in the tailspike proteins

Extensive domain swapping between tailspike protein was ob-
served in all 5 species. Tailspike proteins are commonly classi-
fled into an N-terminal head domain and a C-terminal domain
(Fig. 5A), with the C-terminal domain encompassing a beta-helix
domain that is responsible for both receptor binding and de-
polymerase activity [20, 70]. Previous studies have reported nat-
urally occurring domain swapping in phages based on the pres-
ence of highly similar domains [20, 71]. Leveraging the large
dataset of tailspike protein, a comprehensive assessment of do-
main swapping was performed. To convincingly identify these po-
tential swaps, one of the domains is required to remain within a
highly similar cluster (at 95% identity), while the other domain
is placed in a distinct cluster, even if its identity threshold is sig-
nificantly lower (at 30% identity). Evidence of N- and C-terminal
domain swaps was observed in all 5 species, with a majority of
the observed swaps being in tailspike proteins associated with E.
coli or Klebsiella genomes. This observation can be attributed to
the higher abundance of tailspike proteins identified in these 2
species, emphasizing the advantages offered by large datasets.

For the tailspike proteins that displayed putative domain
swaps, an additional investigation was carried out to explore the
relationship between their associated serotypes and the clus-
tering of their N-terminal and C-terminal domains (Fig. 5B-D,
Supplementary Fig. S10). Within the 95% identity cluster, it was
observed that all tailspike proteins sharing the same C-terminal
cluster were associated with the same serotype. However, this
consistent serotype association was not observed across all N-
terminal clusters. At the 30% identity level, the C-terminal do-
main clusters continued to exhibit a notably stronger association
with serotypes compared to the N-terminal domain clusters. For
example, at the 30% identity level, the C-terminal domain clus-
ter, C_cl30_83, containing 274 vOTUs in Klebsiella exclusively cor-
responded to 2 serotypes, whereas a N-terminal domain cluster,
N_cl30_15, with a similar amount of vOTUs (215) in Klebsiella at the
same identity level originated from a tailspike protein associated
with 20 serotypes. Analysis of the serotype cluster entropy associ-
ated with each N-terminal and C-terminal domain corroborated
these trends, revealing that C-terminal domains were character-
ized by significantly lower levels of serotype diversity compared
to N-terminal domains in all the species (Fig. S5E).

Applying phage-host specificity predictions in
phage therapy cases

To demonstrate the predictive power of our data in aiding
real-world phage host specificity determination in phage ther-
apy, we compiled a dataset consisting of 173 cases for the 5
pathogens. These cases were extracted from scientific literature
and encompassed phage-host infection experiments, as well as
preclinical and clinical phage therapy trials for which both phage
and bacterial genomic data, or host serotype information, were
available (Supplementary Table S4). Within this dataset, tailspike
proteins were identified in the phage genomes from 92 cases.
Remarkably, 64 of these cases (accounting for 69.57%) exhibited
associations consistent with our prediction. When examining just
the preclinical and clinical phage therapy studies, 22 of 66 phages
contained tailspike proteins. In 16 of these cases (accounting
for 72.73%), the bacterial host serotypes were in alignment with
our findings. Collectively, these data suggest that the specific
association between tailspike proteins and host serotypes can be
used to reliably guide the prediction of phage-host specificity in
phage therapy applications.
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A successful example of phage therapy being used can be seen
in the phage AbTP3phil, which was effective against a multidrug-
resistant A. baumannii infection with the K116 serotype [72, 73].
When compared to the set of tailspike proteins identified in this
study, the tailspike protein from the AbTP3phil phage (OL770263)
was found to be homologous to 2 clusters of tailspike proteins as-
sociated with the Acinetobacter K37 (38.0% amino acid identity) and
K116 (37.4% amino acid identity) serotypes (Fig. 3D), 2 of the rarer
serotypes being predicted for only 2 (0.022%) and 26 (0.282%) of
the 9,217 Acinetobacter genomes analyzed, respectively. The K116
serotype has been suggested to be a hybrid of genes from the
Acinetobacter K37 and K14 serotype-specific loci, and the polysac-
charide structures were found to have similar structures [74]. This
result demonstrates the predictive capacity of tailspike protein—
serotype associations, which stems from the comprehensive and
large-scale analysis of the dataset. The knowledge about tailspike
proteins can subsequently be employed to evaluate the viability
of specifically targeting a phage toward a particular serotype, of-
fering a resource to optimize the search process in phage therapy
and rational phage engineering.

Another interesting example lies in the phage-host range ex-
periment for bacteriophage CBA120, which was reported to pos-
sess 4 tailspike proteins [16]. CBA120 infects S. enterica serovar
Minnesota (also known as the Salmonella O21-antigen) due to the
function of tailspike protein (TSP) 1. Meanwhile, TSP2, TSP3, and
TSP4 hydrolyze the 0157, 077, and O78 E. coli O-antigens, respec-
tively. Notably, all 4 of these tailspike proteins were accurately
identified by SpikeHunter, and the top predicted serotypes for
each protein matched the experimental findings. The percentages
of the E. coli 0157-, 077-, and O78-antigens and the Salmonella O21-
antigen in our database are relatively low, 0.725%, 0.767%, 2.124%,
and 0.403%, respectively, indicating that the accurate identifica-
tion of these serotypes is unlikely to be due to random chance.
This underscores the significance of our study in streamlining the
screening process for effective phages in therapeutic applications.

Discussion

Through this large-scale, multispecies genomic analysis, we have
demonstrated the strong association of tailspike proteins and bac-
terial surface polysaccharide receptors at the strain level. By ap-
plying protein language models, we have developed a sensitive ap-
proach for the detection of tailspike proteins, something that has
been challenging due to the sequence diversity seen in these pro-
teins. Our use of prophage-encoded tailspike proteins provides a
way to examine confirmed tailspike-serotype associations across
thousands of genomes without the need for isolating phages and
bacterial strains. These factors have resulted in a rich dataset that
captures phage and serotype diversity and can serve as a resource
for future phage research.

Phage tailspike proteins are crucial in determining phage-
host range and in degrading pathogen polysaccharides, as they
serve dual functions as both phage receptor-binding proteins and
phage-encoded depolymerases. Despite their significance, there
has been a lack of computational tools specifically tailored for
the effective and precise identification of tailspike proteins. Exist-
ing computational methods and pipelines, such as PhageRBPde-
tect [71], PhageHostLearn [75], and BacteriophageHostPrediction
[12], are designed to recognize phage receptor-binding proteins.
Similarly, tools like DePP [76] and PhageDPO [77] aim to identify
phage-encoded depolymerases in phages. However, these tools fail
to differentiate tailspike proteins from the other phage-encoded
depolymerases and receptor-binding proteins that they detect.
Traditionally, the detection of tailspike proteins has not posed a
significant challenge, primarily because they possess this unique
structural feature of the single-stranded beta-helix domain. How-
ever, this identification process has largely been manual, involv-
ing analyses of gene annotations, genomic context, and predicted
structures. This labor-intensive approach has restricted its appli-
cation to small-scale studies and to specific bacterial species [9,
10, 36, 78]. Consequently, SpikeHunter is a pioneering tool, being
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the first computational tool specifically developed for the rapid
and direct identification of tailspike proteins. By focusing on this
critical subset of phage-encoded proteins, SpikeHunter fills a sig-
nificant gap in the field of phage-host interaction research, offer-
ing a novel solution for large-scale studies.

Phage therapy has been proposed as an ideal tool for com-
bating antibiotic resistance [13] and suppressing disease-related
members of the microbiome [79, 80], but the application of phage
therapy has consistently been limited by the ability to identify
phages that would be effective against specific bacterial infec-
tions [13]. The predictive power shown by our data for 70% of
the phage therapy-related trials, especially the tailspike protein
specific to Acinetobacter K116 in the phage AbTP3phil that was
used in a successful phage therapy application [72], as well as
for the multiple cross-species serotype-specific tailspike proteins
in the E. coli phage CBA120 [16], demonstrates the utility of these
data in guiding the phage screening or phage protein selection in
the future. Our results also demonstrate that domain swapping
is common in tailspike proteins, and the modular nature of tail-
spike proteins has allowed them to be engineered to alter their
specificity [81]. Because isolating effective natural phages can be
time-consuming, engineering targeted phages could be an effec-
tive strategy for combating new antimicrobial-resistant bacteria.
This process and the application of tailspike proteins as antimi-
crobial compounds can be significantly enhanced by these results,
leading to more efficient and effective biomedical applications of
phages.

Tailspike proteins also have a promising future as molecu-
lar tools in the glycosciences. The study of bacteriophages and
phage-host interactions has led to the discovery of specialized
polymerases [82], ligases [82], restriction enzymes [83], and the
CRISPR-Cas9 [84] system, which has revolutionized molecular bi-
ology. The polysaccharide-targeting nature of tailspike proteins
makes them ideal candidates as new tools to study glycans. Gly-
can profiling is inherently difficult due to the structural complex-
ity, heterogeneity, lack of templates, and the limited availability of
high-throughput analytical methods [85, 86]. The depolymerase
activity exhibited by tailspike proteins presents the potential for
their utilization analogous to restriction enzymes in DNA diges-
tion, facilitating the breakdown of polysaccharides into smaller
fragments amenable to analysis, such as linkage analysis. More-
over, tailspike proteins have demonstrated utility in the develop-
ment of pathogen biosensors reliant on the recognition of distinct
glycans [11, 87, 88], thus suggesting the possibility of expanding
their functionality to establish novel glycan typing microarrays.

This approach to identifying tailspike protein associations has
some disadvantages that highlight persistent gaps in the field.
First, serotyping prediction tools are primarily focused on com-
mon human pathogens, limiting these results to these species of
interest and underscoring the need for advanced serotype predic-
tion tools that can be generalized to other species. Additionally,
various other types of polysaccharides that were not considered
in this analysis are presented on the cell surface and have been
shown to be receptors for some phages, including enterobacte-
rial common antigen [9] and cellulose [89]. Non-tailspike phage
receptor-binding proteins, which also play roles in binding to bac-
terial cell surface sugars and proteins [90], are important con-
siderations for future studies investigating phage-host interac-
tions and likely explain the phage therapy cases that our asso-
ciations did not match. Finally, it is important to note that most
clinical bacterial samples and phages used in phage therapy have
not been genetically sequenced. This lack of data complicates
the identification of the organisms involved and limits our under-
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standing of the genetic factors that determine phage-host inter-
actions. These limitations highlight gaps in the understanding of
both bacterial serotypes and phage biology that will be important
aspects of future research. Expanding this work to include free
phages and to account for other bacterial species will enhance
the associations and provide important context to the results and
facilitate their application in biomedical contexts. Overall, this
study provides an essential foundation for the future study of bac-
teriophage host specificity and the future use of phages and tail-
spike proteins in a variety of fields.
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Availability of Supporting Source Code and
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Project name: SpikeHunter: A Deep Learning Tool for Identifying
Phage Tailspike Proteins

Project  homepage:  https://github.com/nlm-irp-jianglab/
SpikeHunter (SpikeHunter model and code)

Operating system(s): Linux or other Unix-like operation
systems

Programming language: Python

Other requirements: See https://github.com/nlm-irp-jianglab/
SpikeHunter/blob/main/environment.yml for details.

License: MIT

RRID:SCR_024831

biotools Id: spikehunter

Snapshots of our code are also archived in Software Heritage
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