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Abstract
Motivation: The discovery of the genetic features that underly a phenotype is a fundamental task in 
microbial genomics. With the growing number of microbial genomes that are paired with phenotypic 
data, new challenges and opportunities are arising for genotype-phenotype inference. Phylogenetic 
approaches are frequently used to adjust for the population structure of microbes but scaling them to 
trees with thousands of leaves representing heterogeneous populations is highly challenging. This 
greatly hinders the identification of prevalent genetic features that contribute to phenotypes that are 
observed in a wide diversity of species.
Results: In this study, Evolink was developed as an approach to rapidly identify genotypes associated 
with phenotypes in large-scale multi-species microbial datasets. Compared to other similar tools, 
Evolink was consistently among the top-performing methods in terms of precision and sensitivity when 
applied to simulated and real-world flagella datasets. In addition, Evolink significantly outperformed all 
other approaches in terms of computation time. Application of Evolink on flagella and gram-staining 
datasets revealed findings that are consistent with known markers and supported by the literature. In 
conclusion, Evolink can rapidly detect phenotype-associated genotypes across multiple species, 
demonstrating its potential to be broadly utilized to identify gene families associated with traits of 
interest. 
Availability and implementation: The source code, docker container and web server for Evolink are 
freely available at https://github.com/nlm-irp-jianglab/Evolink.
Contact: xiaofang.jiang@nih.gov
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction 
Identifying relationships between genotypes and phenotypes is a crucial 
task in biology. One vital methodology in this field is genome-wide 
association studies (GWAS), which has led to tremendous advances in 
understanding complex traits and have uncovered hundreds of genetic 
variants in humans over the past several decades (Schizophrenia Working 
Group of the Psychiatric Genomics Consortium, 2014; O’Brien et al.; The 
Electronic Medical Records and Genomics (eMERGE) Consortium et al., 
2014). GWAS approaches have been successfully adopted in the field of 
microbiology and are known as microbial GWAS (mGWAS) (Power et 

al., 2017; Falush, 2016). Unlike human genetic variations that are 
reassorted by meiosis, microbial genetic changes can reach high frequency 
on multiple genetic backgrounds, causing standard GWAS methods to 
predict many false associations. To address this issue, mGWAS methods 
were developed to control for the influence of microbial population 
structure (San et al., 2020; Chen and Shapiro, 2015). Notably, the use of 
phylogeny-based solutions has been shown to be an effective approach 
(Farhat et al., 2013; Sheppard et al., 2013; Weimann et al., 2016). 
mGWAS methods are limited to analyzing a single species or a few sub-
species (Collins and Didelot, 2018; Lees et al., 2018, 2020, 2016; Earle et 
al., 2016; Saund and Snitkin, 2020). However, phenotypic traits can be 
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shared across different species and even phyla, especially in cases of 
convergent evolution. Therefore, it is questionable whether mGWAS 
methods could be applied to distantly related species (Dunn and Munro, 
2016) because they are not specifically aimed at accounting for 
phylogenetic relationships across multiple species. Compared with single 
nucleotide polymorphisms (SNPs), which are used in most mGWAS tools, 
gene gains and losses may contribute equally, if not more, to phenotypic 
evolution across broader taxonomic ranges. So far, only a few approaches 
(Kowalczyk et al., 2019; Prudent et al., 2016; Nagy et al., 2014, 2020) 
have been proposed to perform phylogeny-aware multi-species 
comparative genomic analysis, but their primary focus has been 
eukaryotic species. In microbiology, the rapid progress in sequencing 
technologies has led to the accumulation of microbial species genomes, 
gene family pools (Huerta-Cepas et al., 2019), and phylogenetic trees with 
tens of thousands of leaves representing heterogeneous populations (Parks 
et al., 2022; Zhu et al., 2019). This presents a highly challenging situation 
that has grown beyond the ability of most tools and highlights the need for 
a method that is as powerful as traditional mGWAS approaches but can 
be applied in comparative genomics analyses over large taxonomic scales.
In this study, we proposed an efficient and easy-to-interpret index, the 
Evolink index, to measure genotype-phenotype associations across 
multiple microbial species while explicitly accounting for the 
phylogenetic relationships of those species. We also presented a tool 
named Evolink to facilitate the calculation of this index. Compared with 
alternative methods, Evolink demonstrated its robustness and promising 
performance on both simulated and empirical datasets, ranking among the 
highest-performing methods in F1 scores and having the shortest runtimes 
in various scenarios.
When applied to two real-world datasets, the genes identified by Evolink 
showed a high association with the phenotypes and were well supported 
by previous studies. Evolink facilitates expeditious genotype-phenotype 
association detection in multiple species, addressing the increasing need 
for efficient microbial data analysis. The source code and documentation 
are freely available at https://github.com/nlm-irp-jianglab/Evolink. We 
also provided a docker container 
(https://hub.docker.com/r/nlmirpjianglab/evolink) and a web portal 
(https://jianglabnlm.com/evolink).

2 Methods

2.1 Simulated datasets
In this study, we created four groups of simulated datasets to evaluate 
Evolink and other comparable methods (Table S1). The first group was 
designed to examine each method’s robustness to the distribution of 
positive phenotypes across species and included five datasets where the 
phenotypes ranged from 10% to 90% in prevalence. The second group 
tested the stability of the methods with increasing levels of phenotype 
phylogenetic overdispersion (i.e., decreasing levels of phenotype 
clustering), and included five datasets (details in Figure S1). The third 
group, comprised of six datasets, was used to evaluate runtime with a fixed 
number of 10,000 gene families but varying numbers of species (100 to 
3,200). The fourth group, consisting of five datasets, was used to evaluate 
runtime with a fixed number of 1,000 species but varying numbers of gene 
families (10K to 160K). 
To simulate gene presence/absence changes along the species phylogeny, 
we used a continuous-time Markov chain, an approach that has been 
widely adopted for simulating gene family evolution in prokaryotes 
(Cohen and Pupko, 2010; Cohen et al., 2010, 2013; Zamani-Dahaj et al., 

2016; Collins and Didelot, 2018). We first devised four instantaneous 
transition rate matrices. The and  matrices are used to simulate 𝑄𝑝𝑜𝑠 𝑄𝑛𝑒𝑔

positively phenotype-associated and negatively phenotype-associated 
gene families, respectively. The  matrix represents the instantaneous 𝑄𝑝

transition rate matrix used for phenotype evolution simulation.

                        𝐺0𝑃0 𝐺0𝑃1 𝐺1𝑃0 𝐺1𝑃1

𝑄𝑝𝑜𝑠 =

𝐺0𝑃0
𝐺0𝑃1
𝐺1𝑃0
𝐺1𝑃1

( ―2𝑥 𝑥 𝑥 0
𝛼𝑥 ―2𝛼𝑥 0 𝛼𝑥
𝛼𝑥 0 ―2𝛼𝑥 𝛼𝑥
0 𝑥 𝑥 ―2𝑥)

                       𝐺0𝑃0 𝐺0𝑃1 𝐺1𝑃0 𝐺1𝑃1

𝑄𝑛𝑒𝑔 =

𝐺0𝑃0
𝐺0𝑃1
𝐺1𝑃0
𝐺1𝑃1

( ―2𝛼𝑥 𝛼𝑥 𝛼𝑥 0
𝑥 ―2𝑥 0 𝑥
𝑥 0 ―2𝑥 𝑥
0 𝛼𝑥 𝛼𝑥 ―2𝑎𝑥)

               𝑃0                𝑃1

𝑄𝑝 =
𝑃0
𝑃1( ―(𝑥 + 𝛼𝑥) 𝑥 + 𝛼𝑥

𝑥 + 𝛼𝑥 ―(𝑥 + 𝛼𝑥))
The  represents the total number of substitutions, which was calculated 𝑥
as 80 divided by the total length of species tree branches. The parameter 
α represents the level of association between the gene family and the 
phenotype and was set to 15.
For non-associated gene families that are independent of phenotype, a 

 matrix is designed as follows:𝑄𝑛𝑜𝑛 ― 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑
                                     𝐺0                                         𝐺1

𝑄𝑛𝑜𝑛 ― 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑 =
𝐺0
𝐺1( ― 𝑝𝑔𝑒𝑛𝑒 ∙ 2(𝑥 + 𝛼𝑥) 𝑝𝑔𝑒𝑛𝑒 ∙ 2(𝑥 + 𝛼𝑥)

(1 ― 𝑝𝑔𝑒𝑛𝑒) ∙ 2(𝑥 + 𝛼𝑥) ― (1 ― 𝑝𝑔𝑒𝑛𝑒) ∙ 2(𝑥 + 𝛼𝑥))
𝑝𝑔𝑒𝑛𝑒 =  

𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 ℎ𝑎𝑣𝑖𝑛𝑔 𝑡ℎ𝑒 𝑔𝑒𝑛𝑒  
𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑛𝑢𝑚𝑏𝑒𝑟 , 0 <  𝑝𝑔𝑒𝑛𝑒 ≤ 1

where  represents a broad range of gene prevalence with the number 𝑝𝑔𝑒𝑛𝑒

of species having this gene being sampled from a beta-binomial 
distribution , 𝐵𝑒𝑡𝑎𝑏𝑖𝑛𝑜𝑚(𝑠𝑖𝑧𝑒 = 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑛𝑢𝑚𝑏𝑒𝑟,𝛼 = 0.007, 𝛽 = 0.75)
to mimic the distribution of gene prevalence observed in the empirical data 
(Figure S2).
To simulate the data, we followed these steps:
1. The phylogenetic species trees were simulated with the “pbtree” 
function in the phytools R package (v1.0.3) (Revell, 2012). The tree 
branch lengths resembled those of the empirical species trees in terms of 
their distribution and descriptive statistics (Figure S3). The same species 
trees were used to analyze datasets with varying levels of phenotype 
prevalence and phenotype phylogenetic overdispersion, respectively.
2. The phenotype data for datasets with varying phenotype prevalence was 
generated by randomly assigning corresponding percentages of tree leaves 
with the presence of the phenotype. To simulate phenotype phylogenetic 
overdispersion, the species tree was cut into multiple clusters and the 
phenotype presence/absence was allocated to the interleaved clusters.
3. Given the assigned phenotype states on tree leaves and the  matrix, 𝑄𝑝

the probabilities of phenotype presence/absence at each internal node were 
calculated through 10000 repetitions of stochastic character mapping 
using the “make.simmap” function in the phytools R package (v1.0.3) 
(Revell, 2012).
4. The positively and negatively phenotype-associated gene families were 
simulated along the tree branches based on  or , respectively and 𝑄𝑝𝑜𝑠 𝑄𝑛𝑒𝑔

adjusted by the pre-calculated phenotype presence/absence probabilities 
at each node of the tree. Each simulated dataset contained ten positively 
associated and ten negatively associated gene families. The non-
associated genotypic states were simulated along the tree via the 

 matrix. If a gene family to simulate has low prevalence, it 𝑄𝑛𝑜𝑛 ― 𝑎𝑠𝑠𝑜𝑐𝑖𝑎𝑡𝑒𝑑

may be absent in all species after simulation. In this case, the simulated 
data for that gene family would be discarded and rerun. 
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Descriptive statistics of species tree branch lengths and phenotype and 
gene gain/loss rates in the simulated data are provided in Table S1. The 
simulated datasets are available as Supplementary Data S1 to S4 and the 
scripts to generate them are provided at https://github.com/nlm-irp-
jianglab/Evolink/tree/main/Evolink_paper.

2.2 Empirical dataset
Madin et al. provided a synthesis of bacterial and archaeal phenotypic trait 
datasets by unifying multiple microbial trait sources 
(https://github.com/bacteria-archaea-traits/bacteria-archaea-
traits/releases/tag/v1.0.0) (Madin et al., 2020). From the genomes that 
could be mapped to the 5,709 WoL (Reference Phylogeny for Microbes) 
bacterial species (Zhu et al., 2019), a total of 8,172 genomes labeled with 
“flagella” or “no” in the motility category were extracted. The “flagella” 
label was a subcategory under “motility”. Genomes labeled “yes” were 
excluded, while genomes labeled with “no” were treated as lacking both 
motility and flagella, and were used as negative samples, resulting in 
phenotypic assignments for 1,978 WoL species. Since including species 
with ambiguous phenotypes can potentially introduce noise and reduce the 
accuracy of the results, we excluded species that had strains with mixed 
labels, resulting in 1,948 unambiguously labeled species, including 284 
species with flagella function and 1,664 without. A rooted phylogenetic 
species subtree for the above species was extracted from the WoL 
reference species tree. These species represent a broad taxonomic range, 
including 31 phyla, 57 classes and 264 families (Figure S4). Protein 
coding genes for the species-representative genomes were predicted using 
Prokka v1.14.6 (Seemann, 2014) with default settings and bacterial COG 
annotation was performed using eggNOG-mapper v2.1.6 (Cantalapiedra 
et al., 2021). A total of 149,316 gene families were converted into a binary 
gene presence/absence matrix with rows corresponding to gene families 
and columns to species. The flagella ground truth, comprised of 24 
structural genes that are hypothesized to have been conserved in the 
ancestral bacterial genome, is an ideal resource for investigating genotype-
phenotype associations in bacteria (Liu and Ochman, 2007). These 24 
genes were assigned to 21 gene families using eggNOG-mapper (with 
multiple genes sometimes assigned to a single family) and were used as 
the minimum reference set for flagella-associated gene families in the 
empirical dataset (Supplementary Data S5). 
To further demonstrate the utility of our method using another real-world 
example, we used the gram-staining dataset from the study of Madin et al. 
(Madin et al., 2020). The data was processed in the same way as the 
flagella dataset. A total of 30,493 genomes labeled with “Gram-negative” 
(labeled as phenotype presence) or “Gram-positive” (labeled as phenotype 
absence) in the gram-staining category were extracted and associated with 
4,472 WoL species. After excluding species containing mixed gram 
strains, there were 4,104 unambiguously labeled species consisting of 
2,503 Gram-negative species and 1,601 Gram-positive species 
(Supplementary Data S6). 
To generate subsets from these large datasets, we utilized Treemmer v0.3 
(Menardo et al., 2018) to randomly sample 10% of the species from the 
original species tree. This approach allowed us to create flagella and gram-
staining subset trees with minimal loss of phylogenetic diversity.

2.3 Benchmarking
The benchmarking was done using both simulated data and empirical data 
with flagella as a phenotype. Tetrachoric correlation, a measure of the 

correlation between two binary variables was used as the baseline (Divgi, 
1979). Evolink was also compared with the other two types of phylogeny-
aware methods. The multi-species methods considered were COMPARE 
(comparative phylogenomic analysis of trait evolution) (Nagy et al., 
2014), RERconverge (Kowalczyk et al., 2019), ForwardGenomics 
(Prudent et al., 2016), and Phylolm (Bradley et al., 2018), however, only 
ForwardGenomics and Phylolm were used in the comparison due to the 
unavailability of open-source software or a webserver implementation for 
COMPARE and the computational cost of constructing gene trees for each 
gene in RERconverge. Only the “GLS (generalized least square)” method 
was used for ForwardGenomics as the “branch” method prepares ancestral 
reconstructions for all gene families, which is computationally costly. 
From the available mGWAS methods, Bugwas (Earle et al., 2016), Pyseer 
(Python sequence element enrichment analysis) (Lees et al., 2020, 2018, 
2016), treeWAS (Collins and Didelot, 2018), and Hogwash (Saund and 
Snitkin, 2020) were chosen because they incorporated phylogenic 
information. Bugwas was modified to handle binary phenotypes by 
converting the genotype binary matrix into a biallelic SNP-like format. 
Hogwash was limited to using the synchronous test and phyC test due to 
the binary phenotypes used in the comparison. The parameters and 
descriptions of the methods tested in this study are provided in Table S2.
All methods were executed on a high-performance computing node with 
32 CPUs and 240 GB of memory. A series of metrics including precision, 
recall, F1 score, balanced accuracy, the area under the precision-recall 
curve (PRAUC), false positive rate and runtime were utilized to evaluate 
the performances of these methods.

3 Results

3.1 Design of the Evolink index
The Evolink index is based on the calculation of four Faith’s phylogenetic 
diversities for species with and without a gene family in the subtrees based 
on the presence and absence of the phenotype (G1P1, G0P1, G1P0 and G0P0 
in Fig.1A). In this study we focus on the presence or absence of gene 
families, but these features could represent other genetic characteristics in 
a more general sense. Faith’s phylogenetic diversity (PD) of a set of 
species is defined as the sum of the lengths of all those branches on the 
tree that span the members of the set (Faith, 1992; Faith and Richards, 
2012). Due to Faith’s PD’s clear rationale and simplicity, other metrics 
derived from it, such as Functional diversity, RecPD, and Unifrac have 
been proposed and widely utilized (Petchey and Gaston, 2002; 
Bundalovic-Torma et al., 2022; Lozupone and Knight, 2005; Lozupone et 
al., 2006, 2011). 

Fig. 1. Schematic diagrams for the Evolink index and the Evolink plot. (A) The 
schematic diagram for the Evolink index. The calculation of the Evolink index is based on 

four Faith’s phylogenetic diversities (Faith’s PD) for species with and without a gene family 
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in the phenotype-positive and negative subtrees. (B) The schematic diagram for the Evolink 
plot. Each point in the Evolink plot represents a gene family with its Evolink index on the 
y-axis and its Prevalence index on the x-axis. The Evolink index quantifies the association 
of a gene family with the phenotype, whereas the Prevalence index indicates the gene 
prevalence across species.

We define  as a function to extract a subtree from tree  with a subset φ(X,t) t
of species  and . We also define  as a function to X φ(X,t) ⊆ t PD(X, t)
calculate the Faith’s phylogeny diversity for a set of species  on tree , X t
and  as a function to get the sum of branch lengths of . Two bl(t) t
functions,  and , to get the presence and absence binary pheno(x) genei(x)
status of the phenotype and any gene family  for a species , are defined i x
as follows (Fig.1A):

𝑝ℎ𝑒𝑛𝑜(𝑥) = {1,  𝑖𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑥 ℎ𝑎𝑠 𝑡ℎ𝑒 𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒
0,  𝑖𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑥 𝑑𝑜𝑒𝑠𝑛′𝑡 ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑝ℎ𝑒𝑛𝑜𝑡𝑦𝑝𝑒

𝑔𝑒𝑛𝑜𝑖(𝑥) = {1,  𝑖𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑥 ℎ𝑎𝑠 𝑔𝑒𝑛𝑒 𝑓𝑎𝑚𝑖𝑙𝑦 𝑔𝑖
0,  𝑖𝑓 𝑠𝑝𝑒𝑐𝑖𝑒𝑠 𝑥 𝑑𝑜𝑒𝑠𝑛′𝑡 ℎ𝑎𝑣𝑒 𝑔𝑒𝑛𝑒 𝑓𝑎𝑚𝑖𝑙𝑦 𝑔𝑖

Given a phylogenetic tree  with a set of species 𝑇 𝑆 = {𝑠𝑝1,𝑠𝑝2,…,𝑠𝑝𝑖,…, 
 which contain a set of gene families , the 𝑠𝑝𝑁} 𝐺 = {𝑔1,𝑔2,…,𝑔𝑖,…, 𝑔𝑀}

Evolink index for each gene family  is defined as follows:𝑔𝑖

𝐸𝑣𝑜𝑙𝑖𝑛𝑘 𝑖𝑛𝑑𝑒𝑥 =
1
2

(𝐺𝑖
1𝑃1 ― 𝐺𝑖

0𝑃1 + 𝐺𝑖
0𝑃0 ― 𝐺𝑖

1𝑃0)

where

𝐺𝑖
𝑥𝑃𝑦 =

𝑃𝐷({𝑠𝑝𝑖:𝑔𝑒𝑛𝑜𝑖(𝑠𝑝𝑖) == 𝑥}, 𝑇𝑦)
𝑏𝑙(𝑇𝑦)

is defined as a phylogenetic diversity ratio, with  and 𝑥,𝑦 ∈ {0, 1} 𝑇𝑦 = 𝜑
.({𝑠𝑝𝑖:𝑝ℎ𝑒𝑛𝑜(𝑠𝑝𝑖) == 𝑦},𝑇)

The higher the Evolink index, the more positively associated the gene 
family is with the phenotype, while a smaller index value indicates a more 
negative association with the phenotype. The Evolink index ranges from -
1 to 1, with a maximum or minimum value indicating that a gene family 
has the exact same or opposite presence/absence pattern as the phenotype, 
respectively.
Likewise, a Prevalence index can also be defined as:

𝑃𝑟𝑒𝑣𝑎𝑙𝑒𝑛𝑐𝑒 𝑖𝑛𝑑𝑒𝑥 =
1
2

(𝐺𝑖
1𝑃1 + 𝐺𝑖

1𝑃0 ― 𝐺𝑖
0𝑃1 ― 𝐺𝑖

0𝑃0)

The higher the Prevalence index is, the more prevalent the gene family is 
across the species. It also ranges from -1 to 1 and is highly correlated with 
the gene family prevalence in species (Figure S5).

3.2 Implementation of Evolink
Evolink requires three inputs: a rooted phylogenetic tree with leaves 
representing species, a gene family presence/absence matrix and a 
phenotype presence/absence list mapped to species (presence=1 and 
absence=0) (Figure 2). The gene family matrix can be a binary 
presence/absence matrix or a numeric matrix (representing gene copies, k-
mer counts, etc.). To ensure proper processing of numeric matrix inputs, 
users must inform Evolink of this using the “-c/--copy-number” option to 
convert the matrix to binary format. The Evolink and Prevalence indices 
are computed by extracting phenotype-based subtrees from the species 
tree and combining the four Faith’s PD values. Phenotype-associated gene 
family candidates can then be identified with various available methods in 
the Evolink such as the Generalized Extreme Studentized Deviate (GESD) 
test (Rosner, 1983), Isolation Forest (Liu et al., 2012), by using z-score or 
using a custom-defined Evolink index threshold to detect outliers. The 
GESD test is a statistical test designed for detecting outliers in a univariate 
dataset. In this test, the p-value is used to determine whether an 

observation in the dataset deviates significantly from expected values and 
is therefore considered an outlier. In the context of Evolink, the p-value 
measures the probability that the Evolink index value of a gene family is 
an outlier. Isolation Forest, a machine learning anomaly detection 
algorithm, detects gene families whose absolute Evolink index values 
significantly deviate from the background. The threshold for identifying 
gene families with significant associations is determined by the upper 
bound of maximal differences of the sorted outlier scores. Isolation Forest 
is used by default in the Evolink. By providing multiple options for outlier 
detection, Evolink aims to empower users to conduct extensive 
exploration of their data.
To facilitate the visualization of results from Evolink, we designed the 
Evolink plot, a type of scatter graph based on the Evolink and Prevalence 
indices, with each point representing a single gene family (Fig.1B). The 
Evolink index naturally ranks widespread and rare gene families lower 
than those who are not. In the Evolink plot, the most positively associated 
gene families (with higher Evolink indices on the top) and negatively 
associated gene families (with lower Evolink indices on the bottom) tend 
to have moderate Prevalence index values. Apart from the Evolink plot, a 
zipped input file for users to visualize the tree with iTOL v5.0 (Letunic 
and Bork, 2021), a species tree with leaves annotated with the 
presence/absence of phenotypes and the top associated gene families, and 
a Manhattan plot are generated (Fig.2). 
Fig. 2. The workflow of Evolink. With a species tree, a binary phenotypic list, and a 

binary gene family matrix as input, the Evolink index for each gene family is calculated to 

investigate its association with the phenotype. An outlier detection approach (by default 

isolation forest) is applied to identify significant gene families that are associated with the 

phenotype. These results can be visualized using tree plots, Evolink plots, and Manhattan 

plots.

3.3 Evaluation of Evolink Performance on Simulated 
Datasets

We compared Evolink with twelve other methods on four types of 
simulated data to assess its performance under various conditions (Table 
S2). These compared methods included tetrachoric correlation, 
phylogeny-aware multi-species methods (ForwardGenomes, Phylolm) 
and repurposed mGWAS methods (Bugwas, Pyseer using different linear 
models, treeWAS and Hogwash using different tests). 
First, we tested how the ratio of positive and negative phenotypes would 
impact the performance of the methods being evaluated. In many cases, 
phenotypic information is unavailable for a substantial number of strains 
and the distribution of phenotypes is often highly variable and uneven 
(Madin et al., 2020; Nayfach et al., 2021; Mukherjee et al., 2021). We 
used five datasets with different phenotype prevalence values across 
species to mimic these situations and benchmarked the performance of 
each tool. Most methods perform well except for the tetrachoric 
correlation when the phenotype is evenly distributed among species, but 
their accuracy decreases when the phenotype prevalence deviates from 
50%, particularly in terms of precision (Fig.3A). Among these methods, 
the performance of treeWAS is the most susceptible to phenotype 
prevalence. Unlike most methods, Phylolm, predicted many more 
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associated genes than the ground truth gene set, resulting in much lower 
precision and a higher false positive rate (Table S3).

Fig. 3. Comparing Evolink with alternative methods on simulated datasets. (A-B) 

Comparison of F1 scores, the areas under the precision-recall curve (PRAUC), false 
positive rates (FPR), and balanced accuracies of methods on datasets with a range of (A) 
phenotype prevalence and (B) phenotype phylogenetic overdispersion. Note that because 
treeWAS uses three different strategies (namely terminal score, simultaneous score, and 
subsequence score), the PRAUCs for treeWAS were the maximum PRAUC of the three 
strategies on each dataset. (C-D) Comparison of runtimes among methods on datasets with 
a variety of (C) species numbers and (D) gene family numbers. Note that only methods 
with runtime less than 5 hours (300 minutes) on the datasets are shown. Pyseer (fem): 
Pyseer using the fixed effects model; Pyseer (lmm): Pyseer using linear mixed model; 
Pyseer (enet): Pyseer using the elastic net model. Please refer to Table S2 for parameters 
and descriptions of the tested methods.

Next, these methods were tested on datasets with different levels of 
phenotype phylogenetic overdispersion. A phenotype phylogenetic 
overdispersion value measures the spread of a phenotype across different 
species on a phylogenetic tree. It provides information about how evenly 
or unevenly the phenotype is distributed across the tree. All the tested 
methods, except for Pyseer using the linear mixed model and Phylolm, 
were able to accurately predict the ground truth on the dataset with the 
highest phenotype phylogenetic overdispersion. However, most of the 
methods compromised, in varying degrees, in F1 scores when the 
phenotype was more clustered since they tended to predict fewer 
significant genes. When evaluating the F1 scores on the dataset with the 
lowest phenotype phylogenetic overdispersion, only Bugwas and Evolink 
accurately identified the ground truth (Fig.3B, Table S3). In summary, 
Evolink’s performance was stable and remained the top method on a broad 
range of phenotype prevalence and phenotype phylogenetic 
overdispersion values, indicating its robustness to changing phenotype 
distributions (Fig.3A-B).
Lastly, to evaluate runtime performance, two groups of datasets were 
used, with varying numbers of species and gene families, respectively. 
The first group had a fixed gene family number (N=10K) and varying 
number of species, and all methods except Hogwash and 
ForwardGenomics finished within 25 minutes. Evolink performed well 
and exhibited a notable advantage in speed when analyzing larger species 
sizes (Fig.3C). The second group had a fixed species number (N=1000) 
and a varying number of gene families, with Evolink showing comparable 
speed to the fastest mGWAS methods, producing results in under 5 
minutes for all the datasets (Fig.3D). Both Hogwash and 

ForwardGenomics failed to produce results on the smallest dataset. The 
results of testing with these simulated datasets indicate that Evolink’s 
performance is highly robust and that it is the fastest among all the tested 
methods except for the baseline method (Figure S6, Table S3).
It should be noted that despite using the coefficient with the highest F1 
score as the threshold to identify significant genes, the baseline tetrachoric 
correlation method was outperformed by phylogeny-aware methods on the 
simulated data, indicating the importance of phylogeny information in 
identification of microbial genotype-phenotype associations (Fig.3). 
Overall, Evolink demonstrated superior performance on simulated data 
while maintaining an efficient runtime. Nevertheless, these simulation 
results only provide a partial evaluation of the method’s performance, and 
thus an evaluation based on empirical data was further performed.

3.4 Evaluation of Evolink Performance on an Empirical 
Dataset with Flagella as a Phenotype

We further compared Evolink with eight other approaches on an empirical 
dataset using flagella as the phenotype of interest containing 1,948 species 
and 149,316 gene families (Fig.4). The approaches involved in the 
comparison include Phylolm, Bugwas, Pyseer using different linear 
models and treeWAS. We selected flagella as a phenotype because it plays 
a crucial role in several essential bacterial functions, such as bacterial 
motility, adhesion, biofilm formation, and host invasion (Kirov, 2003; 
Haiko and Westerlund-Wikström, 2013).

Fig. 4. Comparing Evolink with alternative methods on the flagella dataset. The (A) 
precisions, (B) recalls, (C) F1 scores, (D) false positive rates (FPR), (E) balanced 
accuracies, and (F) runtimes of the selected nine methods on the flagella dataset. Note that 
because treeWAS uses three different strategies (namely terminal score, simultaneous 
score, and subsequence score), the PRAUCs for treeWAS were the maximum PRAUC of 
the three strategies on each dataset. (G) The precision-recall curves and the areas under the 
curves for all the methods. (H) The Venn diagram showing the intersection of the ground 
truth and the flagella-associated genes identified by the top three methods ranked by F1 
scores. Pyseer (fem): Pyseer using the fixed effects model; Pyseer (lmm): Pyseer using 
linear mixed model; Pyseer (enet): Pyseer using the elastic net model. Please refer to Table 
S2 for parameters and descriptions of the tested methods.
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None of the tested methods achieved a precision of 1.0. One possible 
explanation for this is that the ground truth gene set used consists of a core 
set of genes that are exclusively and universally associated with flagella. 
This means that accessory or taxonomically restricted genes may be 
excluded, despite potentially being strongly associated with flagella. 
Nevertheless, Evolink ranked second with a high precision of 0.368, only 
slightly lower than treeWAS’s precision of 0.388 (Fig.4A, Table S4). The 
top four methods based on F1 scores were Pyseer using the linear mixed 
model, Pyseer using the elastic net model (alpha=0.5), treeWAS and 
Evolink with F1 scores of 0.368, 0.378, 0.543 and 0.538, respectively 
(Fig.4C, E). Although treeWAS had a higher F1 score than other methods, 
it only predicted 19 out of 21 ground truth genes, resulting in a lower recall 
of 0.905 (Fig.4B). Evolink was the quickest method with a runtime of 4 
minutes, while treeWAS was the most time-intensive, taking over 42 
hours to complete (Fig.4F). Furthermore, the areas under the precision-
recall curve (PRAUC) of all methods were calculated to compare their 
rankings of flagella-associated gene families. Although Pyseer using the 
linear mixed model, Pyseer using the elastic net model (alpha=0.5), and 
treeWAS achieved similar F1 scores to Evolink, they had lower PRAUC 
scores than Evolink, which achieved a PRAUC of 0.92 (Fig.4G). To make 
evaluating ForwardGenomics and Hogwash feasible, we utilized a subset 
of the data. Even though the runtime of the subset data was still longer 
than that of other methods on the full dataset, ForwardGenomics 
demonstrated fair performance with an F1 score of 0.678 and a PRAUC 
of 0.754 (Table S4). Despite their time-consuming nature, the 
performances of treeWAS and ForwardGenomics on the flagella 
(sub)dataset suggest their potential application for analyzing small 
datasets. To summarize, we have shown that Evolink is a highly 
competitive approach when compared with alternative methods in the 
empirical dataset, achieving high F1 scores while maintaining the shortest 
runtime.
Evolink predicted 57 gene families that were positively associated with 
the flagella phenotype, and no negatively associated gene families 
(Fig.5A, Table S5). Ten of these were universally shared with the ground 
truth and the other top two methods based on F1 score, while 13 were 
uniquely found by Evolink (Figure 4H). The presence/absence of the top 
five genes ranked by the Evolink index was mapped to the species tree, 
demonstrating a strong association with the presence and absence of the 
flagellar function at leaves (Fig.5B). The 36 gene families predicted by 
Evolink yet not in the ground truth were either directly related to flagella 
such as FliJ, FliK, and FliO, or involved in chemotaxis, type III secretion 
system, and ATP-dependent protease. Among the 13 genes unique to 
Evolink, most were related to flagella, chemotaxis, and signal 
transduction. However, two sRNA-binding regulator proteins (COG1551, 
CsrA/RsmA; COG1923, Hfq), a disulfide bond formation protein 
(COG1495, DsbB), and an uncharacterized conserved protein (COG1671, 
UPF0178 family) were also identified (Table S5). It has been widely 
reported that CsrA/RsmA proteins can directly regulate the flagella 
expression and the RNA-binding protein Hfq acts as a cofactor during the 
process (Mika and Hengge, 2013; Wei et al., 2001; Timmermans and Van 
Melderen, 2010). An early study reported that mutations in DsbB can 
disrupt flagellar assembly in Escherichia coli (Dailey and Berg, 1993). To 
further measure if these gene families are correlated with flagella, we 
assigned each gene family an average of STRING (Search Tool for the 
Retrieval of Interacting Genes/Proteins) database association scores 
(Szklarczyk et al., 2021) between itself and the ground truth genes. Forty-
five of the predicted genes reached scores greater than 700, indicating their 
strong association to known flagella markers (Table S5).

Fig. 5. The flagella-associated and gram staining-associated gene families identified 
with Evolink. (A) Evolink plot for flagella data. The left panel shows the top five positively 
flagella-associated genes (COG1987, COG1684, COG1558, COG1677, and COG1815) are 
highlighted in a zoom-in view. The right panel shows the overview of the Evolink plot 
including other positively associated (light red) and non-associated (grey) genes. (B) The 
presence and absence of flagellar function and the top five genes were mapped to the 
species tree (n=1,948). (C) Evolink plot for gram staining data. The left panel shows the 
top four Gram-negative-associated genes (COG4775, COG0795, COG1137, and 
COG0848) and the top one Gram-positive-associated gene (COG1481) in a zoom-in view. 
The right panel shows the overview of the Evolink plot including other positively associated 
(light red), other negatively associated (light blue) and non-associated (grey) genes. (D) 
The states of gram staining and the top five associated gene presence and absence were 
mapped to the species tree (n=4,104). Note that if a species is Gram-negative, its phenotype 
is positive (or labeled as “1”). “+”/ “-” represents positively/negatively associated genes, 
respectively. Trees are displayed by the ggtree R package (v2.4.2) (Yu, 2020).

3.5 Application of Evolink to a Real-World Dataset with 
Gram Staining as a Phenotype

To demonstrate the practical applications of Evolink, we applied it to a 
real-world gram staining dataset including 4,104 species and 191,099 gene 
families. This dataset, which comprises bacteria classified into two 
categories based on cell membrane structure as Gram-positive 
(monoderm) with a single cell membrane and Gram-negative (diderm) 
with an outer membrane containing lipopolysaccharides (Sutcliffe, 2010), 
serves as an example of Evolink’s ability to effectively analyze real-world 
multi-species comparative genomics data. Compared with the flagella 
dataset, this dataset has a larger number of species and a less biased 
phenotype prevalence (Fig.5D). Although there is no standard ground 
truth for genes to distinguish Gram-negative and Gram-positive bacteria, 
the LPS synthesis genes (lpxABCD) have been widely recognized as being 
unique to Gram-negative bacteria, making them useful markers for this 
group of bacteria and a good test set for Evolink (Opiyo et al., 2010; Taib 
et al., 2020).
Among the methods applied to this gram-staining dataset, only Evolink, 
Pyseer using the elastic net model (alpha=0), and Pyseer using the fixed 
effects model correctly detected all four lpxABCD genes (Table S6). 
Evolink identified 56 significant genes in total, with 41 being associated 
with Gram-negative bacteria and 15 with Gram-positive bacteria (Fig.5C, 
Table S7). We further used the average STRING database association 
scores between a set of genes and lpxABCD (referred to as the lpxABCD 
association score) to evaluate the methods’ performance. Evolink ranked 
first with a lpxABCD association score of 445.57, while the scores of other 
methods were below 300 (Table S6). In addition, a comparison of the gene 
families shared by the above three approaches and the lpxABCD gene set 
showed that the 30 genes uniquely identified by Evolink have a lpxABCD 
association score of 304.48, while 26 genes uniquely found by Pyseer 

Page 6 of 8Bioinformatics

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

D
ow

nloaded from
 https://academ

ic.oup.com
/bioinform

atics/advance-article/doi/10.1093/bioinform
atics/btad215/7131073 by N

IH
 Library user on 05 M

ay 2023



Article short title

using the fixed effects model have a score of 292.72, the 5 genes uniquely 
found by Pyseer using the elastic net model (alpha=0) have a score of 
172.90 and the 90 genes uniquely shared by both Pyseer-based models 
have a score of 134.45 (Figure S7). These collectively suggest that 
Evolink performed better than the other methods on the gram staining 
dataset. Moreover, Evolink had the fastest performance compared to other 
methods on this dataset (Table S6).

4 Discussion
The existing methods for multi-species comparative genomic analysis are 
primarily geared towards analyzing a limited number of genomes from 
closely related species and are not equipped to handle datasets containing 
tens of thousands of species. In response to this, we propose the use of the 
Evolink index as a tool for measuring genotype-phenotype associations 
based on phylogeny. The Evolink index provides an efficient way to 
calculate these associations and is easy to interpret. The constrained values 
of the index facilitate comparative analyses and the integration of the 
Evolink index into other large-scale genomics investigations. The 
utilization of the Evolink index is expected to contribute to the 
advancement of multi-species comparative genomic analysis and provide 
valuable insights into the evolution of microbial populations.
Despite its strengths, the Evolink index has several limitations that must 
be taken into consideration when using it for analysis. First, Evolink is not 
the optimal solution for detecting horizontally transferred genes such as 
mobile genetic elements. If a gene is rapidly exchanged between species, 
the phylogenetic relationships that Evolink leverages are not helpful in 
detecting the association. Phylogeny-unaware methods such as correlation 
analysis may be sufficient for identifying the associated genotypes in these 
cases. Second, Evolink was designed to be used with large datasets. For 
smaller datasets, other methods like ForwardGenomics and treeWAS 
could be more accurate, although more time-consuming. We also 
observed that several mGWAS methods, including Bugwas and Pyseer, 
exhibited satisfactory performance and speed in certain scenarios, but their 
suitability for a particular study would depend on the specific 
characteristics of the dataset and research question being investigated.
Future improvements are possible for Evolink. Currently, Evolink 
supports only binary phenotype and gene family inputs, but future 
versions could include the option to convert categorical data into unique 
binary representations and automatically convert continuous 
phenotypic/genotypic inputs into binary based on cutoffs determined by 
the software or provided by the users. Additionally, it may incorporate 
conversion from genes to higher-level biological ontologies to better 
address convergent evolution and to provide more flexibility in how 
genetic features are represented. Overall, Evolink promises to be a useful 
tool for the further analysis of microbial genomic data and the continued 
expansion of Evolink will provide new ways to study the genetic basis of 
traits across biological fields.
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