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Editor: Damia Barcel6 Wastewater-based epidemiology (WBE) is a non-invasive and cost-effective approach for monitoring the spread of a
pathogen within a community. WBE has been adopted as one of the methods to monitor the spread and population
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data. Here, we have developed a new distance metric, CoVdist, and an associated analysis tool that facilitates the ap-
plication of ordination analysis to WBE data and the identification of viral population changes based on nucleotide var-
iants. We applied these new approaches to a large-scale dataset from 18 cities in nine states of the USA using
wastewater collected from July 2021 to June 2022. We found that the trends in the shift between the Delta and Om-
icron SARS-CoV-2 lineages were largely consistent with what was seen in clinical data, but that wastewater analysis
offered the added benefit of revealing significant differences in viral population dynamics at the state, city, and
even neighborhood scales. We also were able to observe the early spread of variants of concern and the presence of
recombinant lineages during the transitions between variants, both of which are challenging to analyze based on
clinically-derived viral genomes. The methods outlined here will be beneficial for future applications of WBE to mon-
itor SARS-CoV-2, particularly as clinical monitoring becomes less prevalent. Additionally, these approaches are gener-
alizable, allowing them to be applied for the monitoring and analysis of future viral outbreaks.
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1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
emerged in late 2019 and resulted in the global COVID-19 pandemic. To in-
form COVID-19 responses, surveillance tools such as clinical genomic epi-
demiology were promptly applied to track pathogen transmission,
estimate infection cases, identify circulating variants, and study viral evolu-
tion. Subsequently, wastewater-based epidemiology (WBE), where public
health indicators are monitored through the analysis of wastewater sam-
ples, was adopted to complement clinical-based genomic epidemiology
on SARS-CoV-2 (Jones et al., 2020; Mantilla-Calderon et al., 2022; Park
et al., 2021; Xiao et al., 2020; Xing et al., 2020). The key advantages of
WBE are that it is low-cost, non-invasive, and provides an anonymous sam-
pling opportunity that captures viral diversity from symptomatic and
asymptomatic individuals within a community (Lavania et al., 2022; Park
et al., 2021). The wide application of WBE for SARS-CoV-2 has played an
important role in continuous monitoring at a community level, especially
where clinical testing and sequencing efforts are insufficient.

Targeted high-throughput sequencing of wastewater samples makes it
possible to obtain SARS-CoV-2 genomic data, allowing for the identification
of single nucleotide variants (SNVs) in the viral population and thereby
providing a way to monitor variants of concern in the sampled locations
(Crits-Christoph et al., 2021; Fontenele et al., 2021; Gregory et al., 2021;
Izquierdo-Lara et al., 2021; Jahn et al., 2022; Karthikeyan et al., 2022).
Moreover, studies have shown that through WBE approaches, mutations
can be identified before they are seen in clinically-derived sequencing
data (Pérez-Cataluiia et al., 2022), and variants of concern (VOC) can be de-
tected before clinical cases (Jahn et al., 2022; Karthikeyan et al., 2022). So
far, most of the studies in the USA have focused on just one or a few cities
within a state (Karthikeyan et al., 2022; Rouchka et al., 2021) and have
had relatively short collection timeframes limiting their utility in under-
standing long term trends in viral populations (Baaijens et al., 2022;
Layton et al., 2022; Sutton et al., 2022; Swift et al., 2022; Vo et al., 2022).

Bioinformatic analysis of high-throughput sequencing data from waste-
water is challenging because the sequencing data quality is often hindered
by low genomic concentrations, primer bias during amplification, and frag-
mentation of the viral genome. In addition, the metagenomic nature of the
wastewater sample, of which genetic material is derived from viruses of di-
vergent evolution history within a population, creates challenges for accu-
rate phasing and detection of specific circulating lineages. Since WBE is a
developing field, various bioinformatic tools to address these issues are
still being developed using different approaches, such as the co-
occurrence of mutations associated with VOC lineages within reads
(COJAC) (Jahn et al., 2022), sample deconvolution methods such as Freyja
(Amman et al., 2022; Karthikeyan et al., 2022), and the comparison of mu-
tations associated with specific lineages (Ellmen et al., 2021; Pechlivanis
et al., 2022). However, the use of some standard metagenomic approaches,
such as ordination analysis, are still underdeveloped in WBE research.
Ordination analysis can summarize and present high-dimensional data
sets in a low-dimensional ordination space, while capturing the similarity
and dissimilarity of the original data. It allows us to visualize complex
data and examine intra-group variability, and it could be a valuable tool
for investigating trends in the COVID-19 pandemic.

In this study, we performed whole-genome amplicon sequencing of
SARS-CoV-2 nucleic acids from 39 wastewater catchments across nine
states and 18 cities in the USA, with the samples taken approximately
twice per month from July 2021 to June 2022. We developed a distance
measurement metric named CoVdist to evaluate the dissimilarity between
the amplicon metagenomic samples and a bioinformatic framework that
is suitable for SNV and indel calling from wastewater samples. We found
that although the shift of Delta to Omicron SARS-CoV-2 lineage was
consistent with the global trend during the time frame, there were signifi-
cant regional variations, including the diversity of circulating VOC lineages,
the time point that the frequency of the signature mutations for each VOC
lineage changed, as well as the temporal dynamics of the relative
abundance of the viral lineages. This study shows that WBE can
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potentially inform public health guidance and interventions on a city or
even neighborhood scale.

2. Methods
2.1. Sample collection and processing

Samples were collected from 39 wastewater treatment plants or within-
sewer collection system locations across nine states in the USA including
Arizona, Georgia, Illinois, Kentucky, New Jersey, New Mexico, Oregon,
Texas, and Washington. Arizona (number of catchments = 17) and
Kentucky (number of catchments = 6) included neighborhood-scale man-
hole sampling locations (Supplementary Table 1). The sampling locations
were variable with wastewater flows ranging from approximately
0.1-200 + million 1/day and populations served of <1000 to 800,000 peo-
ple. Composite wastewater samples were collected by automated high-
frequency wastewater samplers deployed at each target location that
were programmed to collect aliquots of wastewater over a 24-h period
based on predefined flow or time requirements as determined by the partic-
ipating municipality. Samples were collected at the plant headworks for
wastewater treatment plants, while sewer collection system samples were
taken at pump stations, permanent underground vault systems, or from tar-
get manhole locations. Collected samples were mixed well and transferred
from the automated samplers to high density polyethene bottles for over-
night shipment to Arizona State University (ASU) with a combination of
blue and wet ice. Local samples were hand-delivered to ASU on wet ice
on the same day samples were collected. Collection occurred approximately
once every two weeks.

Samples were processed immediately upon receipt to limit RNA degra-
dative losses. Approximately 70 ml of wastewater was vacuum filtered
using a 0.45 pM polyethersulfone filter unit (Thermo Fisher Scientific,
Waltham, MA) to remove larger debris. The filtrate was subsequently
concentrated using Millipore Sigma Amicon Ultra Centrifugal Filter Units
(Burlington, MA) with a 10,000 molecular weight cutoff filter and 15 ml
holding capacity. Five sequential 20-min centrifugations were completed
at 2200g. Total filtrate volumes passed through the centrifugal tubes and re-
sultant concentrate volumes were recorded for calculation purposes. In
total, 200 pl of the final concentrate were used for total RNA extraction
using a Qiagen RNeasy Mini Kit (Hilden, Germany) following the manufac-
turer's specifications to a final volume of 50 pl.

2.2. SARS-CoV-2 RT-qPCR

Quantification of SARS-CoV-2 was performed using two assays, a
singleplex (E gene target) and multiplex (N1, ORFlab, and S gene targets).
The singleplex targeting the E gene was designed and validated by Corman
etal. (Corman et al., 2020). The probes for this assay were purchased from
Integrated DNA Technologies (Coralville, IA), and the reaction was per-
formed using Invitrogen SuperScript III Platinum One-Step qRT-PCR Kit
(Carlsbad, CA). Thermal conditions were as follows: hold for 5 min at
50 °C, 2 min at 95 °C, followed by 40 cycles of 95 °C for 3 s and 58 °C for
30 s. The E gene standard curve was executed in triplicate (1 X 10%-
1 x 10° copies/pl) with a reaction efficiency of approximately 92 % and
cycle threshold (Ct) < 32.9. In the multiplex assay, the Applied
BiosystemsTM TagPathTM COVID-19 Combo Kit and TaqPathTM Multi-
plex Master Mix (No ROX) were used (Thermo Fisher Scientific - Waltham,
MA). Manufacturer's recommendations were modified as follows (per
well): 10 pl nuclease free water, 6.25 pl multiplex master mix, 2.5 pl MS2
phage control (diluted 1:10 with nuclease free water), and 1.25 pl
COVID-19 real-time PCR assay multiplex, 5 pl of sample. Thermal condi-
tions were as follows: hold for 2 min at 25 °C, 10 min at 53 °C, 2 min at
95 °C, followed by 40 cycles of 95 °C for 3 s and 60 °C for 30 s. The standard
curve (1 X 101-1 x 106 copies/pul) was run in triplicate with reaction ef-
ficiencies of 100 % for N1 and S, and 96 % for ORF1ab; cycle threshold cut-
off thresholds were < 34.9, < 31.9, and < 34.9, respectively. The positive
control was purchased from Twist Bioscience (Control 1, Australia/VIC01/
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2020, MT007544.1). Negative controls were included in each sample
batch, where deionized water went through the entire filtration, concentra-
tion, and RNA extraction steps. Additionally, no-template controls
(nuclease free water) were included in each plate (1 well per 7 samples)
to assess for contamination. All negative controls resulted in non-detects.
Applied Biosystems QuantStudio 3 or 5 Real-Time PCR System (Foster
City, CA, USA) were used for analysis, with Design and Analysis software
version 1.5.1.

2.3. High-throughput sequencing

The extracted total RNA (16 pl) from each sample was used to generate
c¢DNA using the Superscript® IV VILO Master Mix (ThermoFisher,
Waltham, MA, USA) following the manufacturer's protocol with the reverse
transcription incubation step (50 °C) for 30 min. 10 pl of cDNA from each
sample was used to generate Illumina sequencing libraries with the
xGen™ SARS-CoV-2 Amp Panel 96 rxn kits (IDT, Coralville, IA, USA). In ad-
dition, two controls were run per sequencing run (water control and a
wastewater sample from 2019 before the SARS-CoV-2 pandemic to assess
cross-contamination). The libraries were pooled (96 libraries that had
both negative controls), normalized, and sequenced on an Illumina HiSeq
2500 sequencer (2 X 150 paired-end; 96 libraries per sequencing run) at
Psomagen Inc. (Rockville, MD, USA).

2.4. Metagenomic data processing and analysis

We designed a SARS-CoV-2 metagenomics analysis pipeline to process
the demultiplexed raw sequencing reads generated from the wastewater
samples (Fig. 2A). The raw reads were received from Psomagen Inc. (Rock-
ville, MD, USA) with the adapters removed. Briefly, the adapter-trimmed
raw reads were aligned to the reference genome of SARS-CoV-2 (Wuhan-
Hu-1/2019; MN908947; RefSeq ID NC_045512.2) using BWA-MEM
(v. 0.7.17) (Li and Durbin, 2009). The amplification primers used for en-
richment before sequencing were soft-clipped from the alignment using
the tool “iVAR trim” (v.1.3.1) (Grubaugh et al., 2019), and the bam file
was then re-aligned using “LoFreq viterbi” (v.2.1.5) (Wilm et al., 2012) to
correct possible mapping errors. Subsequently, an initial variant call was
performed using LoFreq (v.2.1.5) (Wilm et al., 2012) where the VCF file
output was used to compute primer bias using iVAR. The flagged primer
pairs are then used to remove primer-biased reads from the alignment
files using iVAR tools (v.1.3.1) (Grubaugh et al., 2019). The final bam file
with biased reads removed was then used for a final variant call using
LoFreq with a minimum coverage of 5 reads, minimum quality base of 30
and minimum mapping score of 20. The VCF file was then annotated
using snpEff (v5.0) (Cingolani et al., 2012) to obtain amino acid mutations.
Only samples with >50 % of the genome covered with at least 5 reads
per position were used for downstream analysis. The SARS-CoV-2
metagenomic data analysis pipeline is available in GitHub repository
(https://github.com/nlm-irp-jianglab/bioinfo-wwbe).

2.5. Sample dissimilarity distance analysis with CoVdist

To calculate dissimilarity between SARS-CoV-2 in wastewater
metagenomic samples, we proposed a new metric, CoVdist, based on the
Yue & Clayton dissimilarity index (Yue and Clayton, 2005) to measure
the pairwise distances between wastewater samples and lineages. Using
the SNVs called from samples i and j mapped to a reference genome with
a length of N bases, the CoVdist can be defined as:

N pi 'pj
COVdI'Sti‘j = Z 1— %
n=1 PpPn +PnPn—PyPn
where pl, is the vector representing the proportions of A, C, U/T, and G at

position n for sample i. For example, a vector of [0.3, 0.4, 0.1, 0.2] indicates
the allele frequencies of A, C, U/T and G are 30 %, 40 %, 10 % and 20 %,
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respectively. CoVdist is subject to the rules of distance: (1) The CoVdist be-
tween a sample and itself is always zero. (2) Its value is always non-
negative; (3) It is symmetric; (4) It satisfies the triangle inequality.

CoVdist uses as an input the variant call file (VCF) and depth file from
each sample. In this tool, the CoVdist matrix could be used to perform an
ordination analysis through principal coordinate analysis (PCoA), multidi-
mensional scaling (MDS) or t-distributed stochastic neighbor embedding
(t-SNE) methods. In addition, we provide VCFs generated for each SARS-
CoV-2 lineage based on the output of the phylogenetic tree UshER
(Lanfear and Mansfield, 2020; Turakhia et al., 2021). The user can plot
the lineages of interest along with the wastewater samples to identify the
population diversity in the context of the genetic diversity of each
SARS-CoV-2 lineage. The tool also contains an option to plot the results,
generating an interactive plot in html format (https://github.com/nlm-
irp-jianglab/CoVdist).

2.6. Identification of indels and SNVs associated with pangolin lineages

The SARS-CoV-2 genomes available at GISAID (Elbe and Buckland-
Merrett, 2017; Shu and McCauley, 2017) on August 15th 2022 were
downloaded for analysis. The genomes were then processed by Nextclade
CLI (v.2.4.0) (Aksamentov et al., 2021) which generates a multiple se-
quence alignment against the reference genome GenBank accession #
MN908947; RefSeq ID NC_045512.2 (Wuhan-Hu-1,/2019) and provides a
list of SNVs, insertions, and deletions associated with each genome se-
quence. The same set of genomes was analyzed with Phylogenetic Assign-
ment of Named Global Outbreak Lineages (pangolin) (v.4.1.2-pdata-1.13)
(O’Toole et al., 2021) to obtain a pangolin lineage classification for each ge-
nome. Only genomes that passed all quality controls as “good” applied by
Nextclade and that passed pangolin quality control for lineage assignment
were used for downstream analysis.

To identify SNVs associated with pangolin lineages and clades, a
mutation annotated phylogenetic tree including all available genomes
(n = 6080,78) from GISAID, GenBank, COG-UK, and CNCB generated by
sarscov2phylo pipeline (v. 13-11-2020) used by the Ultrafast Sample place-
ment on Existing tRee (UShER) (v. 0.5.6) (Lanfear and Mansfield, 2020;
Turakhia et al., 2021) was downloaded on August 15th, 2022. The tool
matUtils (McBroome et al., 2021) was used to extract (1) which mutations
are associated with each node in the tree (2) the mutations associated with
each lineage (from root to lineage) from the mutation annotated phyloge-
netic tree. The root to lineage mutations were then used to obtain a list of
defining mutations per lineage, which consisted of those mutations associ-
ated with the lineage but not the ones present with their parental lineage.

2.7. VOC lineages relative abundance estimation in wastewater samples and
clinical data

The lineage relative abundances for the wastewater samples were calcu-
lated by the tool Freyja (Karthikeyan et al., 2022). Clinical data of VOC lin-
eage prevalence was obtained through the outbreak.info API which is
enabled by GISAID (Gangavarapu et al., 2023). We focused on lineages
belonging to the VOC lineages Alpha, Delta, and Omicron or recombinant
lineages between Delta/Omicron or Omicron/Omicron lineages only. Prev-
alence was obtained for all nine states of the study in the same collection
time frame from July 2021 to June 2022.

3. Results
3.1. Overview of the sequencing data from wastewater samples

In this study, we sequenced SARS-CoV-2 in 807 wastewater samples de-
rived from 39 catchments in nine states in the USA: Arizona (sample size =
352), Georgia (sample size = 27), Illinois (sample size = 25), Kentucky
(sample size = 77), New Jersey (sample size = 27), New Mexico (sample
size = 26), Oregon (size = 77), Texas (sample size = 55) and
Washington (sample size = 141) (Fig. 1A). The samples were collected
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on average every 2 weeks over 11 months from July 2021 to June 2022
(Fig. 1B) which was the period when the SARS-CoV-2 VOC lineages Delta
and Omicron emerged. Viral load for each sample was quantified by real-
time reverse transcriptase polymerase chain reaction (RT-qPCR) using
four target primers (E, N1, ORFlab, and S) (Supplementary Table 1). The
most consistent results for viral load were obtained with the N1 primer
(Fig. 1C-D).

The whole-genome amplicon sequencing data of wastewater samples
was quantified by the breadth of coverage, which was calculated by map-
ping sequencing reads to the SARS-CoV-2 reference genome (GenBank ac-
cession # MN908947; RefSeq ID NC_045512.2). Of the 807 samples, 351
(43 %) had over 90 % coverage, 263 (33 %) had between 90 % and 50 %
coverage, and 193 (24 %) had below 50 % coverage. The 614 samples
with >50 % coverage passed the quality controls and were further used
for downstream analysis. As expected, we observed that the breadth of cov-
erage was highly correlated with the mean depth of coverage (Fig. 1C and
E). The quality of the sequencing data was also consistent among catch-
ments within states (Fig. 1C) despite the fact that different environmental
factors and collection methods can directly impact SARS-CoV-2 RNA degra-
dation in wastewater (Bertels et al., 2022) and viral genome recovery
through high-throughput sequencing. These results supported the reliabil-
ity of the sample processing performed in the study where the correlation
of breadth of coverage with mean read depth and cycle threshold value ob-
served are consistent across the collection period (Fig. 1E and F). Although
the majority of samples with high viral RNA concentration via qPCR (corre-
sponding to low cycle threshold values) showed high breadth of coverage in
the Illumina sequencing, there was no clear correlation between the two pa-
rameters. In fact, some samples with low viral RNA concentration (high
cycle threshold values) showed good breadth of coverage (Fig. 1D and F).
This same observation has also been reported in previous studies (Crits-
Christoph et al., 2021; Fontenele et al., 2021; Izquierdo-Lara et al., 2021).

3.2. Ordination analysis reveals the temporal shifts in VOC lineages prevalence

Unlike in clinically-based genomic epidemiology, it is not reasonable
to use a consensus genome to represent the SARS-CoV-2 variants present
in the wastewater as the samples will always contain a mixture of viral
lineages. Ordination analysis, which has been widely implemented in
metagenomic research, cannot be directly applied to SARS-CoV-2 whole ge-
nome sequencing data from wastewater because the canonical population
dissimilarity measurement depends on knowledge of the component com-
position. To address this issue, we developed a tool called CoVdist to mea-
sure the pairwise distances between SARS-CoV-2 populations and estimate
viral population diversity within wastewater samples (Fontenele et al.,
2021) and between wastewater samples and SARS-CoV-2 lineages.

Using CoVdist, we performed ordination analysis on the wastewater
samples (Fig. 2B). We included all the SARS-CoV-2 lineages from the
Delta and Omicron VOC lineages (as assigned by pangolin v.4.1.2-pdata-
1.13) (O’Toole et al., 2021), the two main VOC lineages circulating during
the period of this study. The PCoA plot shows lineages from each VOC lin-
eage cluster according to their respective clades in the global phylogenetic
tree as described by Nextstrain (Hadfield et al., 2018) and highlights the ob-
served temporal shift in the viral population. SARS-CoV-2 sequences in
samples collected from July 2021 to early November 2021 clustered with
Delta lineages, which were the most abundant circulating lineages based
on clinical data. The majority of samples clustered more closely to the
Delta lineages from clade 21J. The cluster of wastewater samples domi-
nated by Delta lineages was significantly separated from those dominated
by Omicron lineages along the first principal coordinate (PC1, accounting
for 55.84 % of the total variance). The VOC lineage Omicron emerged in
early December 2021 and had superseded Delta lineages by late December
2021 or early January 2022 at most locations. The population transition
from Delta to Omicron lineages was also observed in the PCoA plot with
samples from December and January clustering with the Omicron lineages
from clade 21K (lineages BA.1 and descendants) and later samples
(February/March/April 2022) clustering more closely to lineages in the
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clade 21L (BA.2, BA.5 and BA.4 and descendants). This shift once again
mirrored what has been observed in clinical data where BA.1 derived line-
ages were more abundant in the initial Omicron wave of infection and were
later displaced by BA.2 lineages. These results showed that the CoVdist
viral diversity analysis can capture the temporal shifts in VOC lineages
diversity in wastewater samples.

An analysis of sequences from samples per state demonstrated that spe-
cific timing of transitions between different VOC lineages differed by loca-
tion. The shift from Delta to Omicron started in December 2021 for all
states and only in January 2022 had Delta been replaced by Omicron.
The timing of replacement of Omicron lineage BA.1 and descendants
(21K clade) to BA.2 and descendants (21L clade) varies by state
(Supplementary Fig. 1). Notably an earlier shift was observed in the states
of Arizona, Washington, and Texas which occurred in February 2022, con-
trasting with the clinical data from these states where the transition oc-
curred in March 2022. In all other states, the 21K to 21L transition
started in March 2022, and it seemed to be finished by April 2022. The
two exceptions are the states of New Mexico and Georgia where the com-
plete replacement of 21K to 21L occurred only by May 2022, which in
this case is a month later than what is observed in clinical data. Arizona
was the state with the most collection sites (number of catchments =
17), which showed that the overall viral diversity can vary significantly
within states and neighboring cities. This highlights the importance of
wastewater surveillance at the neighborhood-level to identify changes in
trends among VOC lineages with more refinement and inform public re-
sponses before the virus is disseminated city-wide.

Overall, the sample diversity analysis showed temporal changes in viral
diversity within and between samples. When coupled with VOC lineages
genetic diversity, it can also indicate the most prevalent VOC lineage per
sample. This approach can be a valuable additional tool to observe global
trends based on viral diversity and wastewater surveillance of viruses.

3.3. Defining mutations highlight transitions between SARS-CoV-2 VOC lineages

We further investigated the genetic information that supports the
presence of major circulating VOC lineages (Delta and Omicron) in the
wastewater by identifying the frequency of the defining mutations (SNVs,
insertions, and deletions) associated with each VOC lineage. The frequency
of defining SNVs per sample shows the same temporal trends that explain
the displacement of VOC lineages as in the ordination analysis (Fig. 3).
We were also able to detect the transition period when defining SNVs
from both VOC lineages were detected.

The samples from Arizona were from 17 catchments in 5 cities (Mesa,
Gilbert, Guadalupe, Tempe, and Scottsdale). The defining SNVs from
Delta clades 21A and 21J were prevalent starting from July 2021 until
December 2021 (Supplementary Fig. 2). In late December, there was a tran-
sition from Delta to Omicron during which mutations from both lineages
appeared simultaneously. Those transition points were clear when we ob-
served the defining mutations of each VOC lineage. As of January 2022,
all catchments were dominated by defining mutations from the Omicron
clade 21K (BA.1 and descendant lineages) except for one catchment in
the city of Tempe (Tempe 03) that still presented high frequency of Delta-
associated SNVs in early January 2022 (Supplementary Fig. 2). This result
demonstrated that there could be differences in circulating lineages even
at aneighborhood level, since all other catchments from Tempe had already
shifted to Omicron lineages. In February 2022, we observed defining muta-
tions from Delta but also from Omicron clade 21L in multiple catchments,
demonstrating the utility of WBE in providing refined information on low
frequency circulating lineages. During February and March, we observed
the transition from Omicron clade 21K to Omicron clade 21L, with 21K be-
coming fully displaced by April 2022. This transition was only detectable in
a subset of the catchments (Scottsdale, Tempe 01, 02, 04, 06, 08, and 09)
(Supplementary Fig. 2).

There were only two states, Georgia and New Mexico, where Alpha-
defining SNVs were still observed in samples from July 2021. However,
they had already begun to be replaced by the Delta lineages as evidenced
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Fig. 2. Processing pipeline used to analyze the sequencing data for viral diversity analysis of all wastewater samples from this study. A. Description of the input files, steps, and
output files for processing and analysis of wastewater samples from this study. B. Principal coordinate analysis (PCoA) including the samples that passed quality control from
our study along with the pangolin lineages that are part of the VOC lineages Omicron (gray triangles) and Delta (gray X). The VOC lineages have been labeled based on the
name used in the Nextstrain phylogenetic tree. The wastewater samples (circles) are color coded by collection date. The x and y axis represent the first and second principal
coordinate, respectively, and the values in brackets represent the percentage of variations explained.

by the presence of defining mutations for both VOC lineages. (Supplemen-
tary Fig. 3). The replacement of defining mutations of Delta to Omicron
clade 21K occurred by December 2021 in the wastewater samples from
Georgia, Illinois, and New Mexico (Supplementary Fig. 3). However, in
the states of Kentucky and New Mexico, we only observed the replacement
in January 2022. Because we were lacking samples from December in the
Kentucky locations, we cannot be certain if the replacement occurred be-
fore January 2022. Later, the transition from the Omicron lineages BA.1
(21K clade) to BA.2 lineages (clade 21L) occurred as early as January
2022 for the Illinois location and February 2022 for the Georgia and New
Mexico locations in (Supplementary Fig. 3). The exact time of shift from
21K lineages to 21L is unclear for New Jersey due to missing sampling
data, but the replacement was complete by April 2022. In the locations
from the states of Oregon, Texas, and Washington the transition from
Delta to Omicron started in December and in some locations, it lasted
through January 2022 (Supplementary Fig. 4). Oregon and Washington
samples from January 2022 had low variability in the VOC lineage abun-
dance Delta/Omicron that we could not observe through viral diversity
analysis (Supplementary Fig. 4). The further replacement of the Omicron
lineages from clade 21K to 21L seemed to occur later in samples from the
states of Oregon and Washington starting in March 2022 as opposed to Feb-
ruary as seen in Texas and other states (Supplementary Fig. 4).

We observed the presence of multiple defining mutations of the Delta
21A clade but at a much lower allelic frequency, supporting the minor in-
crease in Delta abundance for the locations of “Tempe 01”, “Americus”,
“Carol Stream”, and “Des Moines 2” despite the previous replacement of
Delta by Omicron (Fig. 3). This showed that Delta lineages were still present
at these locations but were largely missed by the clinical data.

The Omicron lineages became prevalent after late December 2021 in
the United States, but several Omicron defining mutations were detected
in the wastewater samples collected from dates significantly earlier (Sup-
plementary Figs. 2-4). The SNV C15240T was identified as early as August
2021 in Gilbert 1, Tempe 01, and Tempe 05; October 2021 in Tempe 04;
and November 2021 in Tempe 02 and Scottsdale. The SNV C12880T was
detected in Gilbert 2 in September 2021 and at Location 2 of Arizona in No-
vember 2021. The mutation S:Q493R was observed in the sample from Ho-
boken, New Jersey collected in September 2021 (Fig. 3) The defining
insertion of Omicron (22,204:GAGCCAGAA) appeared in early December
samples from Arizona before Omicron became prevalent. In fact, taking Ar-
izona as an example, the earliest genomes isolated from clinical data depos-
ited in GISAID belonging to the Omicron lineages date back to early March
2021. This indicates Omicron could have been circulating much earlier but
at extremely low frequencies. The wastewater samples were able to capture
the Omicron lineages that were circulating at a low frequency.
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Fig. 3. Frequency of defining variants from Delta and Omicron lineages present in wastewater samples from one catchment in each state. The heatmap shows on the y-axis the
variant that is associated with each VOC lineage. The first columns group those variants per VOC lineage which are color coded by the specific Nextstrain clade of the
associated lineages. Variants shared by clades of the same VOC lineage are colored gray. At the top of the heatmap on the x-axis, each column represents a sample which
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shows the frequency of the defining variants that are present in each sample. If the variant position had no depth of coverage, the color is white.
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The overall changes of the frequency of the defining mutations are con-
sistent with the global VOC lineages trends, yet the specific time of the
emergence of lineage defining mutations varied by geographical location,
revealing regional variations in the transmission patterns of VOC lineages.
In addition, the presence of Delta SNVs when Omicron was the most
prevalent VOC lineage in clinical data and the early detection of Omicron
defining mutations shows that wastewater sequencing can capture low
frequency circulating lineages.

3.4. Lineage relative abundance variability at the state, city, and
neighborhood level

The wastewater samples from the catchments revealed neighborhood
and city-level variations of viral composition. We computed the relative
abundance of SARS-CoV-2 lineages for each catchment with Freyja
(Karthikeyan et al., 2022). Our results showed there were variations
when comparing catchments at all geographical scales in the study. This
variation could be attributed to the size of the population and city
dynamic (residential or commercial setting) which influences population
transit between locations and can lead to differences even between close
neighborhoods.

Most of the observed variation occurred after January 2022 and the
emergence of the Omicron lineages which includes the detection of
Delta/Omicron recombinant sequences or recombinants of Omicron line-
ages. Based on clinical data, the initial wave of Omicron was mostly associ-
ated with the BA.1 lineage and descendants, and those lineages were
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subsequently displaced by BA.2 lineages and descendants (Fig. 4).
However, we observed that depending on the catchment location of the
wastewater samples, this transition period was also characterized by the
presence of recombinant sequences between Omicron lineages, Delta line-
ages or other lineages, a more refined snapshot than what is observed by
clinical data (Fig. 4 and Fig. 5) (Bolze et al., 2022; Focosi and Maggi,
2022; Lacek et al., 2022). Our results show that the presence of recombi-
nant sequences is much higher than what has been documented by clinical
data and that Omicron lineages' abundance varied significantly by catch-
ment location.

The state of Arizona had the most catchments (n = 17) representing the
cities of Gilbert, Guadalupe, Scottsdale, Tempe, and one undisclosed city in
our study. The disclosed locations are in Maricopa County, part of the
greater Phoenix metropolitan area, and some share geographical borders
which means there should be a certain level of population exchange be-
tween cities. Unfortunately, we did not obtain consistent data across the
collection period for all catchments and Tempe 03, Tempe 10, and Tempe
11 have very uneven data. Nonetheless, it is clear from the results that
neighborhood scale surveillance shows significant variation in terms of
VOC lineage abundance (Fig. 5). In some catchments, there are clearly dif-
ferent transition periods from BA.1 to BA.2 in which recombinant se-
quences are also detected. Interestingly we observe the emergence of the
Omicron lineage BA.5 very early in March 2022 for the catchments
Tempe 02 and Tempe 03 (Fig. 5). Even though some BA.5 genomes from
clinical data in the state of Arizona were deposited in March 2022, the inci-
dence of BA.5 in clinical data did not start rising until May 2022 (Fig. 4 and
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Fig. 5). Our results show that this lineage was already circulating in Tempe
in those two neighborhoods.

For the states of Georgia, Illinois, New Jersey, and New Mexico, there
was only one catchment location for each (namely the cities of Americus,
Carol Stream, Hoboken, and Farmington, respectively). Despite the bias
in the sampling dates available for each location, we can observe the pres-
ence of Omicron recombinant lineages in the cities of Americus, Georgia
and Farmington, New Mexico during a period of transition between the
BA.1 lineages and BA.2 lineages (Supplementary Fig. 5). In Carol Stream,
Illinois, we also observed the presence of lineage BA.4 starting in May
2022 (Supplementary Fig. 5) which corroborates what was seen for clinical
data in the state of Illinois (Fig. 4). However, even though the BA.4 and
BA.5 lineages had started to appear circulating in the states of Georgia,
New Jersey, and New Mexico, those lineages were not detected in our
collection cities.

In the state of Washington, we have catchments representing four cities
and from those, the city of Sequim and Des Moines had two intra-city catch-
ments. The overall abundance of VOC lineages trend is similar between the
two, but there is a noticeable variation of Omicron lineage abundance be-
tween catchments of the same city which highlights once again the impor-
tance of neighborhood-level surveillance (Supplementary Fig. 5). We also
report the emergence of Omicron lineages BA.4 and BA.5 in some but not
all catchments, showing that the state-level clinical data surveillance does
not reflect city-specific variation (Supplementary Fig. 5).

The three catchment locations from the state of Oregon are from differ-
ent cities within different counties. Therefore, variability across catchments
is expected. In Gresham and Dallas, we observed the presence of BA.4 and
BA.5 in June 2022, as is observed in clinical data (Supplementary Fig. 5).
On the contrary, the three catchments from Texas are all from within the
city of Houston, and surprisingly we observed distinct differences in the
samples from the end of May 2022 in which location Houston 3 seems to
have an increase on Delta lineages even after Omicron has already
seemingly replaced Delta lineages (Supplementary Fig. 5). Due to the lack
of consistent data from the following months across the three Houston loca-
tions, it is difficult to conclude if there was any other abundance variation
occurring. Lastly, we observed no variation across the six collection sites
of Louisville in Kentucky and, even though we are missing data from
some months, the data appears to be consistent between catchments.

4. Discussion

Here, we demonstrate that targeted high-throughput sequencing of
wastewater can provide relevant information on viral diversity and circu-
lating variants of SARS-CoV-2 to help inform public health responses. The
integrity of the viral genome can be affected by added chemicals, shifts in
temperature, pH, and many other environmental factors that will influence
the recovery of the genome through sequencing (Bertels et al., 2022). In ad-
dition, the viral genomic information present in wastewater represents all
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infected individuals that contribute to the catchment in the area which cre-
ates a challenge for the analysis of the sequencing results. Tools to analyze
data from WBE are underdeveloped. Therefore, we developed a tool called
CoVdist to assess viral diversity using ordination analysis. This type of
analysis has been widely applied to traditional metagenomics but has not
been applied to whole-genome amplicon sequenced data including WBE.
CoVdist allowed us to observe temporal trends in wastewater viral diversity
in the context of the genetic composition of SARS-CoV-2 lineages,
supporting catchment-level analysis.

We compared the efficacy of WBE and clinical genomic epidemiology at
the state level (1st administrative division) due to a lack of city-specific lo-
cation metadata in GISAID (Elbe and Buckland-Merrett, 2017; Khare et al.,
2021; Shu and McCauley, 2017). Although this is an impartial comparison,
this study shows that examining only clinical data at the state level does not
reflect the actual diversity of lineages circulating in each city. Although
other studies showed a stronger correlation between the diversity of line-
ages identified in wastewater and clinical data for some cities (Agrawal
et al., 2022; Baaijens et al., 2022), this could be affected by higher rates
of testing in those locations. Additionally, these studies were done at the
city scale, but their conclusions may have been different if a neighborhood
scale analysis was performed like in our study. Nevertheless, our results
show how relevant WBE can be for providing a cost-effective surveillance
tool to inform public health responses, especially for cities that might not
have the capacity for clinical testing and sequencing. The detection of
much more variation on VOC lineage abundances in the locations
analyzed can be related to low clinical sequencing in the area, but it
can also be because wastewater samples provide genetic information on
non-symptomatic individuals which are mostly overlooked by clinical
sequencing.

It is important to highlight that movement of populations across cities
and neighborhoods may also influence the variation of lineage abundance.
In fact, in the catchments from adjacent parts of the Phoenix greater area
where mobility is expected to be high, we observed the most variation
across neighborhoods. In contrast, a large-scale study done in Austria did
not identify strong correlation between mobility and SARS-CoV-2 genetic
diversity (Amman et al., 2022) indicating that this effect may vary in differ-
ent cities. This city-specific trend can also be noticed by our data from Lou-
isville which although representing city and neighborhood level do not
show much variation. The same results have also been reported by another
study done in Louisville (Rouchka et al., 2021). Another important factor
that is not well studied is the difference in extended shedding from infec-
tion by different lineages, which may influence the abundance in the waste-
water but may not be reflected in clinical data. These factors, along with
other demographic and socioeconomic differences between regions, likely
have a significant impact on the regional differences seen in our study.
Nevertheless, it is very likely that the variance in wastewater is influenced
by lineages circulating that have not been observed by clinical data.

As SARS-CoV-2 continues to spread and the virus continues to evolve, it
is likely that viral population dynamics will continue to change and that
new lineages will emerge. As less emphasis is placed on clinical testing,
WBE will be a valuable approach for continuing to monitor the population
dynamics and spread of SARS-CoV-2 at different regional scales. The tools
and approaches developed in this study advance the WBE field generally,
providing new ways to analyze WBE samples. Additionally, these methods
are not specific to SARS-CoV-2 and could be easily adapted to monitor
future outbreaks of viruses.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2023.162862.

Code availability

The SARS-CoV-2 metagenomic data analysis pipeline is available in a
GitHub repository (https://github.com/nlm-irp-jianglab/bioinfo-wwbe).
CoVdist is available in a GitHub repository (https://github.com/nlm-irp-
jianglab/CoVdist).
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