
Received: 20 December 2021 | Revised: 24 January 2022 | Accepted: 24 January 2022

DOI: 10.1002/imt2.4

REV I EW ART I C L E

Applications of de Bruijn graphs inmicrobiome research

Keith Dufault‐Thompson | Xiaofang Jiang

Intramural Research Program, National
Library of Medicine, National Institutes of
Health, Bethesda, Maryland, USA

Correspondence
Xiaofang Jiang, Intramural Research
Program, National Library of Medicine,
National Institutes of Health, Building
38A, Room 6N607, 8600 Rockville Pike,
Bethesda, MD 20894, USA.
Email: xiaofang.jiang@nih.gov

Funding information

Intramural Research Program of the NIH,
National Library of Medicine

Abstract

High‐throughput sequencing has become an increasingly central component

of microbiome research. The development of de Bruijn graph‐based methods

for assembling high‐throughput sequencing data has been an important part of

the broader adoption of sequencing as part of biological studies. Recent ad-

vances in the construction and representation of de Bruijn graphs have led to

new approaches that utilize the de Bruijn graph data structure to aid in dif-

ferent biological analyses. One type of application of these methods has been

in alternative approaches to the assembly of sequencing data like gene‐
targeted assembly, where only gene sequences are assembled out of larger

metagenomes, and differential assembly, where sequences that are differen-

tially present between two samples are assembled. de Bruijn graphs have also

been applied for comparative genomics where they can be used to represent

large sets of multiple genomes or metagenomes where structural features in

the graphs can be used to identify variants, indels, and homologous regions in

sequences. These de Bruijn graph‐based representations of sequencing data

have even begun to be applied to whole sequencing databases for large‐scale
searches and experiment discovery. de Bruijn graphs have played a central role

in how high‐throughput sequencing data is worked with, and the rapid de-

velopment of new tools that rely on these data structures suggests that they

will continue to play an important role in biology in the future.
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Highlights

• de Bruijn graph‐based sequence assembly approaches have been an essen-

tial part of the broad application of sequencing methods, especially in mi-

crobiome research.

• de Bruijn graphs can be used to efficiently represent sequencing data in a

format that is highly scalable and can be extended and modified to address

different research questions.
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• de Bruijn graph‐based analysis methods have been developed for com-

parative genomics, the identification of genetic variants, and for large‐scale
searching of unassembled sequencing data.

• The de Bruijn graph data structure will continue to be a central component

of sequence assembly and analysis approaches in the future.

INTRODUCTION

The rapid development and improvement of genome
sequencing technology has led to significant advances in
microbiome research, including the increased availability
of reference genomes and the ability to sequence entire
microbial communities using high‐throughput sequen-
cing. With these technological advances have come a
variety of new challenges related to how these data, often
in the form of short‐read sequences, are managed, pro-
cessed, and analyzed, which have been addressed
through the development of new algorithms and software
[1]. Some of the most significant advances in how short‐
read sequencing data is handled have come from the
application of de Bruijn graphs (DBGs), which are net-
works that represent the overlapping relationships be-
tween sequence fragments, called k‐mers, derived from a
set of input sequences [2]. DBGs have been prominently
used in genome assembly, where they have comprised a
central component of many of the most efficient de novo
genome and metagenome assembly algorithms [2]. Over
the past decade, DBGs have also seen wider use as
components of analytical tools, being applied for a wide
range of tasks, including bacterial pangenome analysis,
the identification of genome variants, and the compar-
ison of Omics samples. While these methods have not
been widely adopted as parts of many microbiome stu-
dies, they have shown promising results. DBGs have
been instrumental in working with short‐read sequen-
cing data and will likely continue to have significant
roles as sequencing becomes an increasingly central
component of studying microbes.

APPLICATIONS OF DBGs IN
GENOME AND METAGENOME
ASSEMBLY

Assembly of short‐read sequences

The problem of assembling short‐read sequences into
larger genome sequences is fundamental to the use of
next‐generation sequencing in microbiome research. This
problem has been addressed through multiple approaches,

including those employed by Greedy Assemblers [3,4] and
Overlap‐layout‐consensus assemblers [5], which rely on
the identification of overlapping regions between the raw
reads and reference‐based assemblers which utilize read
mapping to an already assembled reference genome [6].
These methods were widely used to generate early gen-
ome assemblies and continue to be used today, but they
have limitations. Both Greedy and Overlap‐layout‐
consensus assembly use information about overlapping
regions between reads, which can be computationally in-
tensive to calculate, and often have problems assembling
low‐complexity sequences like repeats and dealing with
samples that have high sequencing depth [3]. Reference‐
based assembly can produce high‐quality genome assem-
blies, but this method requires a genome of a closely re-
lated organism limiting its application to novel organisms
and can have problems with resolving ambiguous read
mapping to the reference sequence [3]. The most sig-
nificant advances in short‐read assembly for genomes and
metagenomes have come through the use of DBGs, which
overcome many of the limitations of other assembly ap-
proaches [2,7]. DBG‐based assembly approaches do not
rely on calculating the overlap between reads, avoiding
this computationally intensive step involved in greedy and
overlap‐layout‐consensus assembly, and they only require
the sequencing reads circumventing the need for a re-
ference genome [2,7]. DBG‐based assembly can be sensi-
tive to sequencing errors, which can introduce additional
noise to the graph [3], but overall the advantages of DBG‐
based methods have led to the broad adoption of DBG‐
based assembly for the assembly of short‐read genomic
and metagenomic data.

DBG‐based genome assembly starts with decompos-
ing the raw sequencing reads into subsequences of k
length called k‐mers. A graph is then constructed by first
defining a prefix, a k‐mer minus the last nucleotide, and
a suffix, a k‐mer minus the first nucleotide, for every
k‐mer. The total set of unique suffixes and prefixes form
the nodes in the graph and the edges are added based on
the k‐mers that link a given suffix and prefix. The as-
sembly of longer sequences is then done by finding an
Eulerian cycle in the graph, a path that visits each edge
(representing a k‐mer) in the graph one time, and then
collapsing the sequence of the k‐mers in this path to
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assemble longer sequences [2] (Figure 1A). DBG‐based
genome assembly does not require the calculation of
alignments between reads, and has allowed for the effi-
cient and scalable assembly of sequencing data [2]. Early
DBG‐based assemblers, including EULER [8], EULER‐
SR [9], Velvet [10,11], and ALLPATHS [12,13], employed
the basic strategy described above with modifications to
address specific challenges like how repetitive sequences
are assembled and how sequencing errors are detected
and handled. Later assembly approaches, like those em-
ployed by the SPAdes family of software [7,14], SOAP-
denovo family of software [15,16], and MEGAHIT [17],
built upon many of the concepts employed by the early
assemblers, with a focus on improving efficiency, hand-
ling larger datasets like those from metagenomes, and
improving the accuracy of the assemblies. Overall, these
DBG‐based assembly tools represented a significant step
forward in sequence assembly, overcoming many of the
challenges that hindered older assembly approaches and
leading to their wide use in microbiome studies for the
assembly of sequence data.

Gene‐targeted assembly

In many microbiome surveys, one of the desired outcomes
is the identification of genes of interest that could be used
as phylogenetic markers, signals of disease, or represent
unique functions. While metagenome assembly has im-
proved dramatically, some challenges remain, including
bias toward dominant members of the microbial commu-
nity, leading to rarer genes being missed and metagenome
assembly can have significant computational costs [18].
Gene‐targeted assembly approaches seek to address these
challenges by assembling gene sequences directly from
metagenomes rather than predicting them from assembled
contigs. Many gene‐targeted metagenome assembly ap-
proaches utilize DBGs during the assembly process. These
approaches typically use either a sequence or profile hid-
den Markov model‐based search against the raw reads to
identify reads that likely contain portions of gene coding
sequences. Some methods, like those applied by Xander
[19] and MegaGTA [20], then use this search information
to modify the de Bruijn assembly graph by adding weights

(A) (B) (C)

FIGURE 1 Illustration showing different applications of de Bruijn graphs in genome and metagenome assembly. (A) Illustration of
de Bruijn graph assembly. First, a de Bruijn graph is constructed from raw reads, then a path through the graph that visits each k‐mer is
identified (red arrow over the graph), and lastly a sequence is assembled based on this path. (B) Illustration of the general process for
gene‐targeted assembly. First reference sequences or profiles are used to identify reads that may contain partial gene sequences, next this
information is used to add weights (thicker black arrows) to the graph, and lastly these weighted paths can be used to directly assembly gene
sequences. (C) Illustration showing the concept of differential assembly. de Bruijn graphs are generated from multiple metagenomes (red
and blue graphs). These de Bruijn graphs can then be combined revealing portions of the graph that are shared between the two
metagenomes (gray nodes and edges), or portions that are unique to one metagenome (red or blue nodes and edges). Sequences that are
uniquely present in one sample versus the other can then be assembled
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to specific paths in the graph (Figure 1B), aiding in the
identification and assembly of gene sequences. Other tools,
including SAT‐Assembler [21], MEGAN‐Assembler [22],
and phyloFlash [23], use the search results to filter the raw
reads so that only reads with likely coding sequences are
used during the assembly process. Some of these gene‐
targeted assembly approaches have utilized extended ver-
sions of DBGs, highlighting the flexibility of DBGs in dif-
ferent kinds of analyses (Table 1). These modified DBGs
include the weighted DBG graphs used by Xander [19] and
MegaGTA [20], amino acid‐based DBGs like those used in
MetaPA [24], and a variation of a DBG called a succinct
DBG (sDBG) employed in MegaGTA [20]. sDBGs are
memory efficiency variations of DBGs designed to be ap-
plied to large datasets like those generated from meta-
genomes and bacterial pangenomes [25] and have been
adopted by multiple DBG‐based assembly and analysis
methods, including MegaGTA [20], MetaGraph [26], and
MEGAHIT [17]. Gene‐targeted assembly can facilitate the
analysis of metagenomes data while avoiding some of the
potential biases associated with the assembly process. This
allows for the identification of genes from rarer species in
the community and can provide a more complete view of
what organisms and genes are present in a community
based on metagenome sequencing.

Identification of microbial species from
metagenomes

One of the common goals of microbiome research is to
identify what bacteria are present and what genes they
have. This information can be obtained using metage-
nomics, but this requires the ability to differentiate which
reads and contigs come from different species so that the
potential roles of the organisms can be better understood.

The utility of the DBG in identifying different microbial
strains in metagenomes was demonstrated by Wang et al.
[27], where they utilized read mapping to a metagenome
assembly DBG to differentiate reads derived from dif-
ferent bacterial strains without the use of reference
genomes. Many recent efforts have been focused on de-
riving nearly complete microbial genomes from metage-
nomic reads. These metagenome‐assembled genomes
(MAGs) are generated by binning assembled contigs
based on nucleotide frequency and read coverage, relying
on the assumption that these factors will differ between
the species in the original community [28,29]. Recent
attempts at improving metagenomic binning have in-
corporated the DBG to help make and refine MAGs.
These methods, including GraphBin [30] and ME-
TAMVGL [31], incorporate structural features of the
DBG, like the connections between k‐mers and the pre-
sence of unconnected components of the graph, to refine
which contigs are included in each MAG. These ap-
proaches highlight the utility of DBGs in downstream
analyses, where information already present in the DBG
can be used to improve subsequent analyses and may
greatly improve the recovery of higher quality MAGs.

Comparison of Omics samples and
differential assembly

As metagenomic sequencing becomes less expensive, it is
becoming a more commonly applied approach, and stu-
dies will often involve sequencing multiple metagen-
omes. This has led to the need for efficient ways to
identify similarities and differences between metagen-
omes derived from different samples. Still, the size and
complexity of these data makes this a difficult challenge.
Recent studies have proposed DBG‐based approaches for

TABLE 1 Common modifications applied to the basic de Bruijn graph (DBG) data structure and examples of applications that
utilize them

Modification Key concept Applications

Coloring Each k‐mer in the DBG is associated with annotation
information describing its original source
(e.g., genome, read)

MetaGraph, TwoPaCo, Cuttlefish, Bifrost, Cortex,
MCCortext, DiscoSnp, Bubbleparse, Scalpel,
LUEVARI, Rainbowfish, Mantis, VARI

Succinct
representation

Data in the DBG is represented as a bit vector or other
space‐efficient representation

MegaGTA, MEGAHIT, MetaGraph, Rainbowfish

Simplification/
compaction

K‐mers in the graph are collapsed into larger linear
sequences and bubbles or tips caused by potential
errors are removed from the graph

Simpletigs, splitMEM, MetaGraph

Weighting Additional data is used to add weights to paths in the
graph which can be used in subsequent assembly
and analysis

Xander, MegaGTA
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making these comparisons. EMDeBruijn utilizes DBGs
generated from multiple microbiomes and applies a sta-
tistical approach to compare the distances between dif-
ferent samples. This approach has been used to look at
viral populations and aid in the characterization of he-
patitis C transmission, demonstrating its utility in dif-
ferent kinds of biological analyses [32]. Similarly,
MetaFast uses a simplified DBG constructed from mul-
tiple metagenomes to quantify their similarities, provid-
ing a way to compare diversity between different
environments or samples [33]. The recently proposed
MetaGraph approach shows significant promise, allow-
ing for the indexing and querying of entire sequencing
databases or multiple metagenomes in an efficient DBG‐
based format [26]. One of the widely applicable uses of a
method like this would be in what the authors call
“differential assembly,” where the MetaGraph DBG can
be used to identify k‐mers found in some metagenomes
but not others which can then be assembled and ana-
lyzed to look at differences in the microbial communities
between samples [26] (Figure 1C). These methods for
comparing metagenomes without the need for costly read
mapping between samples or the use of a reference da-
tabase have broad applications and make the efficient
and accurate comparisons of Omics samples possible.

COMPARATIVE GENOMICS AND
METAGENOMICS USING DBGs

Comparative genomics using
colored DBGs

The identification of genetic variants between microbes,
like single‐nucleotide variants (SNVs) and indels, has

broad applications in biomedical and ecological studies
[34], monitoring outbreaks of pathogens [35,36], and
differentiating microbial populations at the strain level
[37]. Many of the standard approaches used for variant
discovery utilize mapping to a reference genome or se-
quence, which can be computationally costly and may
not always be possible when references are not available
or are too divergent to be used for accurate comparisons.
To address this problem, multiple tools have been de-
veloped for reference‐free variant detection using DBGs.
These approaches typically utilize a variant of the DBG
called a colored de Bruijn graph (cDBG), which is a DBG
constructed from multiple sources, for example, multiple
genomes or different metagenomic samples, where the
k‐mers are assigned different “color” annotations based
on which inputs they were present in [38] (Figure 2,
Table 1). Multiple tools have been created to facilitate the
construction of these cDBGs from either collections of
genomes or multiple sets of raw reads, including Two-
PaCo [39], Bifrost [40], and Cuttlefish [41]. The ability to
construct these dBGS has facilitated the growth of mul-
tiple other tools that have focused on identifying genetic
variants using DBGs without the need for a reference
genome.

Most of these tools have been developed for the
identification of genetic variants either based on a set of
assembled genomes or based on raw reads from se-
quencing different individuals of the same species. For
detecting SNVs, tools like Cortex [38,42], MCCortex [43].
DiscoSnp [44], and Bubbleparse [45], have all been de-
veloped based on the analysis of DBGs or cDBGs
to identify structural features often referred to as
“bubbles” in the graph, which are points where parallel
paths formed by different k‐mers diverge and then con-
verge back (Figure 2), which may contain SNVs. These

FIGURE 2 Illustration showing the concept of a colored de Bruijn graph (DBG) and the process of variant identification using the graph
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concepts have been subsequently expanded to facilitate
the detection of more complex genetic variants like small
insertions and deletions in the tools DiscoSnp++ [46]
and Scalpel [47]. This process has been extended in the
BubbZ approach to utilize a compacted representation of
the DBGs to detect homologous regions between gen-
omes allowing for comparative analyses between differ-
ent genomes without the need for whole‐genome
alignments [48] (Table 1). These approaches have many
potential applications in microbiome research, where
high‐quality reference genomes for many microbial
strains are often lacking, and reference‐free approaches
would open multiple new routes for analyzing microbial
communities and isolates.

Reference‐free single nucleotide variant
calling in metagenomes

Identifying genetic variants in metagenomic samples is
significantly more challenging than it is when dealing
with sets of genomes. Metagenomic samples can have
many microbial species present, contain multiple closely
related strains, and different organisms may have closely
homologous genes, all of which would make applying
traditional variant calling approaches in metagenomes
difficult. Many of the same techniques previously de-
scribed for variant identification can be used or adapted
for the analysis of metagenomic datasets, including
Cortex [38,42], DiscoSnp [44], DiscoSnp++ [46], and
Scalpel [47] with the same concepts being applicable to
metagenomic DBGs. While these methods can be applied
to metagenomic data, not many tools have been devel-
oped specifically for the task of reference‐free variant
identification from metagenomes. The recently published
LUEVARI approach utilizes a cDBG where the coloring
of the graph is based on the reads in the metagenome
leading to more significantly more sensitive variant
identification from metagenomes compared to other
tools [49]. These approaches to variant identification
could have major implications for microbiome research,
where metagenomic sequencing is quickly becoming a
standard approach for investigating the microbiome.

Querying Omics data sets and experiment
discovery

With the scale and amount of Omics data being pro-
duced, the need has arisen for efficient methods to query
these data. Performing searches on already assembled
datasets has drawbacks, including being limited by the
efficiency of the search approach, having different quality

assemblies made using different approaches, and being
limited to the small subset of data that is available as
assembled data [50]. Multiple methods have been de-
veloped recently to facilitate the construction of cDBGs
from large datasets, including the entire databases like
the Sequence Read Archive (SRA) from NCBI, and the
subsequent development of search methods that can be
used to query these cDBGs has allowed for their use in
large scale searching and experiment discovery. A vital
component of these advances has been the development
of compact versions of colored DBGs like the sDBG [25],
Rainbowfish DBG [51], Cuttlefish DBG [41], splitMEM
[52], and the Simpletigs DBG [53], which employ various
methods to reduce the size of, complexity of, and mem-
ory needed to store the DBG and coloring data (Table 1).
These more efficient representations of DBGs are highly
scalable, meaning they can be efficiently applied to ex-
tremely large data sets, and multiple approaches for
performing searches on these graphs have been devel-
oped. The Mantis and VARI programs utilize an index
based querying approach to identify which k‐mers from a
given query are present in different sequence datasets
[54,55] and was able to efficiently query for the presence
of all known human transcripts in the SRA database [55]
and to query metagenomic samples from food production
facilities [54]. Similarly, the recently proposed Meta-
Graph includes a k‐mer matching‐based search and a
sequence‐to‐graph alignment‐based search approach for
querying their MetaGraph indices [26]. One of the major
challenges facing microbiome research is experiment
discovery, or how to identify sequencing projects that
contain a gene of interest among the rapidly growing
databases of sequences [56]. These DBG‐based ap-
proaches not only allow for these large sequence data-
bases to be represented as concise cDBGs, but also allow
for efficient searching of these indexed datasets allowing
for their broader application in microbiome research.

APPLICATIONS OF DBGs IN
TRANSCRIPTOMICS AND
PROTEOMIC

DBGs have also been used to analyze transcriptomic and
proteomic data. These other types of Omics data bring
their own unique challenges and the methods used to
analyze them differ from the approaches applied to me-
tagenomes [57,58]. The assembly and analysis of these
types of Omics data often rely on reference databases, but
they often fail to capture underrepresented or novel
transcripts and proteins [59]. The approaches that
utilize DBGs have sought to overcome this issue by using
paired Omics data, where a DBG constructed from a
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metagenome sequenced from the same sample is used to
aid in the assembly and analysis of a metatranscriptome or
metagenome [59]. Read2Graph relies on the alignment of
reads from a metatranscriptome to a DBG generated from
a paired metagenome, resulting in a significant improve-
ment in the assembly of transcripts compared to de novo
metatranscriptome assembly approaches [59]. Similarly,
the Graph2Pep and Graph2Pro approaches use a paired
metagenome or metatranscriptome to greatly improve the
identification of peptides in a metaproteomic sample [60].
In addition to assembly, read mapping to DBGs has been
applied to help with the identification of splicing and to
perform more accurate expression estimates from RNA‐
seq data [61]. The efficient assembly and analysis of me-
tatranscriptomic and metaproteomic data have been a
major challenge, limiting the broader application of these
approaches in different studies. The development of these
efficient graph‐based analysis approaches has major po-
tential and can allow for the broader application of mul-
tiomics approaches in increasingly complex biological
systems.

THE FUTURE ROLE OF DBGs IN
MICROBIOME RESEARCH

The study of microbial communities through high
throughput sequences has become an integral compo-
nent of biomedical and environmental microbiology. The
continued development of methods to efficiently assem-
ble and analyze sequencing data has been instrumental
in the broad adoption of sequencing in biological studies,
and DBGs specifically have been a central component of
many of these methods. DBGs have been an essential
component of short‐read assembly methods and ap-
proaches for the assembly and analysis of long‐read
sequencing data are already being developed, demon-
strating their application to this rapidly growing tech-
nology [62]. Additionally, significant algorithmic
advances dealing with the efficient construction [39,41]
and representation of DBGs [50,53,63] continue to be
made which will provide a foundation for the develop-
ment of new methods. While DBGs will undoubtedly
continue to play a central role in assembly, their use in
analytical tools has also been rapidly increasing over the
past decade. These DBG‐based methods have proved to
be efficient and highly scalable, allowing for their ap-
plication to extremely large datasets and opening new
routes of biological discovery that can leverage the ever‐
increasing amount of available Omics data. As sequen-
cing becomes less expensive and even more widely ap-
plied, DBGs will continue to be at the center of many
tools used across microbiome research.
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