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Engineering the gut microbiome to treat disease is an exciting 
new direction in medical science1–3. Fecal microbiota trans-
plant (FMT) from a healthy donor into patients with recurrent 

Clostridium difficile infections is the first widely adopted microbi-
ome-related therapy and has a ~90% success rate4,5. Investigational 
trials are underway in new disease areas, such as inflammatory 
bowel disease, liver disease, Parkinson’s disease, severe acute malnu-
trition and infection by antibiotic-resistant pathogens6–9 (see ongo-
ing clinical trials at https://clinicaltrials.gov/). OpenBiome is a stool 
bank that has provided material for over 48,000 fecal transplants. 
Stool banks like OpenBiome represent an attractive opportunity 
for building a well-characterized culture collection because living 
biomass is preserved, allowing cultivation of isolated strains, and 
because dense longitudinal sampling (that is, several samples being 
collected per week) enables analysis of within-host dynamics. In 
addition, a resource of isolate genomes together with longitudinal 
dynamics can be useful in designing and analyzing future clinical 
trials. Finally, a comprehensive culture collection from successful 
donors could ultimately be used to replace FMT, which is a blunt 
tool for engineering the gut microbiome and may have long-term 
consequences due to the introduction of a wide variety of exoge-
nous strains with unknown function10–12.

While comprehensive strain collections are essential for mecha-
nistic studies, culturing a diverse representation of gut bacteria has 
been challenging. Seminal work by several groups13–17 has addressed 
many of the technological challenges of growing wide arrays of 
gut bacterial lineages, and two recent studies reported isolate and 

genome collections with broad phylogenetic representation18,19. 
However, existing isolate and genome collections are still limited, 
especially in strain-level diversity, for most of the bacterial species in 
the human gut. In addition, current collections are limited in exam-
ples of coexisting strain-level diversity from the same human host 
because the majority of strains were cultured from a large number of 
individuals or were targeted for maximizing phylogenetic diversity.

Recent work has shown that this within-host strain diver-
sity is extensive in the human population20 and within individual 
people21–23. New studies increasingly point to functional differ-
ences between strains of the same species that can impact human 
health21,24,25. For instance, strain-level differences can influence the 
metabolism of dietary compounds, such as galacto-oligosaccha-
rides26 or nondigestible fibers27,28. Bacteria-mediated metabolism of 
drugs can also differ across strains, influencing drug efficacy and 
toxicity29,30. In addition, genomic variation in virulence genes can 
alter pathogenicity among strains31–33. Finally, distinct strains can 
elicit different immune responses, such as cytokine production25. 
For these reasons, a large collection of isolates of multiple strains 
from many gut bacterial species, sampled both within and across 
people, is needed to better understand host–microbe interactions 
and to efficiently screen for candidate features that could ultimately 
be leveraged in rationally designed microbiome-based therapeutics.

Here, we introduce a comprehensive biobank of human gut bac-
teria: a library of 7,758 bacterial isolates obtained from healthy FMT 
donors recruited in the Boston area. This library covers most of the 
phylogenetic diversity found in the human gut, contains extensive 
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strain diversity and is available to the research community. We 
report whole-genome sequences (WGSs) for 3,632 of these isolates 
that span a wide range of phyla and genera, to enable researchers to 
test and predict phenotypes in vitro and in vivo, such as metabolic 
capability or resistance to antibiotics. We also provide longitudinal 
16S, metagenomic and metabolomic data for more than 80 FMT 
donors. Finally, we highlight examples that illustrate how these data 
can be used to better understand the eco-evolutionary dynamics of 
the gut microbiome within and between people.

Results
Isolation of an extensive collection of gut bacterial isolates for 
in vitro and in vivo testing of mechanistic hypotheses. Many strict 
anaerobes in the human gut were considered unculturable until rec
ently14–19,34,35. As a result, densely sampled sets of strains from many 
anaerobic species are still not readily available. Here, we leverage 
recent advances in culturing techniques to isolate a large phyloge-
netic diversity of gut bacterial strains from healthy FMT donors.

Building a library of isolates that cover the diversity of gut bacteria 
from OpenBiome donors. We have designed and implemented pro-
tocols to culture, isolate and store a large diversity of anaerobic gut 
bacterial strains in pure culture. We used filtered stool extracts from 
11 donors within our cohort, and we used 12 different media, com-
bined with antibiotic, acid and ethanol treatments, resulting in 19 
different culturing conditions (see Supplementary Methods). We 
used general media to obtain a wide phylogenetic diversity of bac-
terial species and selective media to grow specific clades of inter-
est. This strategy allowed us to build a large and comprehensive 
open-access collection of human gut bacteria in pure culture (Fig. 
1a and Extended Data Fig. 1). The BIO-ML currently contains 7,758 
isolates belonging to the 6 dominant bacterial phyla in the human 
gut: Actinobacteria, Bacteroidetes, Firmicutes, Fusobacteria, 
Proteobacteria and Verrucomicrobia. We Sanger-sequenced the 16S 
rRNA gene to assign a taxonomy to each isolate. In total, 11 classes, 
16 orders, 40 families and 133 genera are represented in our isolate 
library (Supplementary Table 1).

We next investigated whether the diversity of our cultured iso-
late collection overlaps with the diversity captured by culture-inde-
pendent methods. We found that the BIO-ML comprehensively 
represents the in vivo bacterial genus-level diversity, weighted by 
abundance, found in the whole cohort of individuals (90 individu-
als; samples from only 11 were used to culture isolates) (Fig. 1c). 
In particular, we captured 99% of the diversity of Bacteroidetes 
genera, 96% of Firmicutes genera, 99% of Actinobacteria genera, 
78% of Proteobacteria genera and 100% of Verrucomicrobia gen-
era (represented by Akkermansia, the only Verrucomicrobia genus 
observed in the human gut; see ‘The BIO-ML contains diverse taxa 
associated with human health’ below for more details on this key 
genus). When looking at a range of operational taxonomic unit 
(OTU) resolutions, from 90% 16S similarity to amplicon sequence 
variants (ASVs, 100% 16S similarity OTUs), we confirmed that 
our library covers the diversity of high taxonomic ranks (Extended 
Data Fig. 2a). As expected, this coverage drops when considering 
more specific ranks, especially among Firmicutes, as each individ-
ual will tend to carry unique strains. Efforts to increase the taxo-
nomic representation of missing Firmicutes strains are ongoing. 
Consistent with previous observations (Lau et  al.35 and Rettedal 
et al.34), we were able to isolate taxa that were present at very low 
average relative abundances across all donors (that is, <0.01%) 
or that were simply missed by 16S sequencing (Fig. 1d), such as 
strains from Lactobacillus, Gardnerella, Clostridium cluster XI or 
Lactonifactor genera. Overall, culture-based methodologies pro-
vide access to data that both overlap and complement sequencing 
surveys, enhancing our understanding of gut microbiome func-
tion and diversity.

Next, we asked whether relative abundance derived from cul-
ture-independent 16S data could provide meaningful information 
to guide the culturing and isolation of bacterial clades of interest. As 
selective media used to grow specific microbes were not available 
for the vast majority of gut bacteria, we tested this question using a 
non-selective culture medium (CGM medium, see Supplementary 
Methods). We compared the abundance of bacterial genera growing 
on CGM to their relative abundance in the 16S data. We observed 
no significant correlation between in vitro and culture-independent 
bacterial abundances across our four tested individuals (P > 0.05, 
Fig. 1d). In the absence of selective media, we caution that 16S rela-
tive abundance might not be a reliable predictor of which stool sam-
ples might yield bacterial species of interest.

We next tested whether the same bacteria are observed on the 
same medium across several individuals. We compared diversities 
with both a rich (CGM) medium and a selective culturing condi-
tion (Mmm + Ab4 media, see Methods), and we picked colonies 
randomly on plates with no morphological selection. The bacte-
rial diversity captured varied extensively across individuals (Fig. 1e, 
P < 0.001) for both types of media, and differences in 16S relative 
abundances across individuals did not explain the variation in cul-
tured diversity. This suggests that other factors, such as differences 
in dormancy states across individuals36, might drive in vitro cultur-
ing outcomes.

The BIO-ML contains diverse taxa associated with human health. 
We isolated and sequenced strains from organisms that are strongly 
associated with human health. First, we cultured 159 of the ‘Most 
Wanted’ OTUs (n = 485) identified by the Human Microbiome 
Project (HMP) as both lacking cultured representatives and being 
associated with diseases37 (Fig. 1b). We also biobanked bacteria that 
have been difficult to culture and isolate so far, such as Akkermansia 
and Faecalibacterium, and that have very few representatives in ref-
erence strain collections. Akkermansia muciniphila is a host mucin 
degrader38, and has been associated with inflammatory bowel dis-
eases and metabolic disorders39,40. We successfully isolated 132 dif-
ferent Akkermansia strains and sequenced the genomes of 45 strains 
of A. muciniphila and of 67 strains that, based on whole-genome 
information, belong to a previously unknown species within this 
genus (Extended Data Fig. 3). Faecalibacterium prausnitzii is a major 
butyrate producer28 known to have anti-inflammatory effects41. The 
depletion of F. prausnitzii is correlated with Crohn’s disease41 and 
irritable bowel syndrome42. It is also the only characterized spe-
cies within the Faecalibacterium genus. We cultured and isolated 
75 Faecalibacterium strains. We sequenced the whole genome of 
19 F. prausnitzii strains, as well as 4 additional strains that, based 
on whole-genome information, belong to unknown species in this 
genus (Extended Data Fig. 3).

Ecology and evolutionary dynamics inferred from isolate 
genomes. Quality and diversity of BIO-ML isolate genomes. To 
enable mechanistic studies with the BIO-ML isolates, we sequenced 
and assembled 3,632 bacterial genomes (Fig. 2a and Extended Data 
Fig. 2b). This genome collection consisted of 106 species clusters 
(defined by genomic similarity, see Methods) and 48 known gen-
era across Actinobacteria, Bacteroidetes, Firmicutes, Proteobacteria 
and Verrucomicrobia (Extended Data Fig. 2b). We assigned a spe-
cies taxonomy to 101 genome clusters. The five remaining clusters 
with unknown species affiliation were Firmicutes lineages that 
belong to the Ruminococcaceae and Peptostreptococcaceae fami-
lies, and to the Clostridiales order. Among the 3,632 genomes, 1,337 
genomes were from species that were longitudinally isolated from a 
single individual (individual am, Extended Data Fig. 1b). The over-
all quality of the genome assemblies was high: the median complete-
ness level was 99.5%, the median positional coverage was 124×, the 
median scaffold N50 (the minimum contig length needed to cover 
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50% of the genome assembly) was 155,045 bp and the median esti-
mated contamination was negligible (0.3% by CheckM analysis) 
(Fig. 2b–e). We next compared the genetic diversity of BIO-ML 
genomes to other isolate genome collections: National Center for 
Biotechnology Information (NCBI; comprising 79,226 human 
gut and non-human-associated genomes), HMP13 (2,265 human-
associated genomes, BioProject PRJNA28331), Cancer Genomics 
Research18 (CGR; 1,520 human gut isolate genomes) and Human 
Gastrointestinal Bacteria Culture Collection19 (HBC; 736 human 
gut isolate genomes). Of our genomes, 80–96% were closely related 
to at least one reference genome (measured by the Mash distance 
(≤0.05)), depending on the considered reference genome collec-
tion (Fig. 2g). This was expected, as both previous genome col-
lections and BIO-ML genomes were sampled from industrialized 

populations. As such, the BIO-ML collection greatly increases the 
strain-level diversity in known species of human gut bacteria.

Nonetheless, for 17–39% of our genomes, protein similarity to 
their closest reference genome was lower than 95% (Fig. 2f), and 
4–20% were part of species that have no representatives in the HMP, 
CGR and HBC collections (Fig. 2g). Finally, we evaluated diversity 
in gene content, focusing on two Bifidobacterium species: B. adoles-
centis and B. longum. We showed that strains within these two spe-
cies have extensive variation in gene content, and that they greatly 
increased the diversity of gene repertoires as compared to reference 
Bifidobacterium species (Fig. 2h,i). Overall, our cross-sectional and 
longitudinal genome collection provides the necessary phylogenetic 
resolution to investigate long- and short-term genomic evolution 
at the levels of gene content and single-nucleotide polymorphisms 
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Fig. 1 | The BIO-ML library of human gut bacterial isolates. a, 16S phylogenetic tree of the 7,758 BIO-ML isolates. Lineages are colored by phylum.  
b, Cladogram showing the genus name and OTU ID of the Most Wanted OTUs identified by the HMP that have isolate representatives in the BIO-ML. 
c, Abundance-weighted taxonomic coverage of the library of bacterial isolates, compared with the diversity observed through culture-independent 16S 
amplicon sequencing. The library of isolates was built using 11 donors. The phylogenetic diversity of isolates was measured using 16S sanger sequencing, 
and this was compared with the total diversity observed in the 16S sequence data obtained from 1,168 samples from 90 individual donors of the BIO-ML. 
Taxonomic coverage was evaluated both at the genus levels (shown in c) and 97% OTU levels (Extended Data Fig. 2). Percentages and darker shades 
indicate diversity within each phylum captured by culture-dependent isolation methods. d, Culturing can sometimes capture bacterial taxa that are missed 
by culture-free methods. The relative abundance of bacterial 16S sequence variants of bacteria isolated on the general CGM medium was compared 
with culture-free 16S abundances. Relative abundances are on a log scale, and a pseudocount of 10–3 was added to represent sequence variants with null 
abundances, either on the CGM medium or in the culture-free 16S data. Each dot represents a bacterial genus. Dots below the plots show genera that were 
not obtained on CGM but were observed with culture-free sequencing. Dots on the left of plots show genera isolated on the CGM medium that were not 
seen in the culture-free sequencing data. For each individual, and on this general medium, the correlation between abundances is nonsignificant.  
e, The genus diversity captured by culturing approaches is inconsistent across individuals (Linear mixed-effects model, P < 0.001), with both a general and 
a selective medium. Each cell represents a genus, which is colored by phylum as in a.
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within gut species (see ‘Extensive sampling of isolate genomes 
reveals the long- and short-term evolution of gut commensal bac-
teria’ below for such investigations in two Bifidobacterium species).

Resistance to ethanol is more widespread than previously thought and 
not restricted to spore-formers. In order to enrich for endospores 
when culturing our isolates, we treated samples with an equivalent 
volume of ethanol for 1 hour at room temperature, as described pre-
viously16,36. We show that, while ethanol treatment tends to enrich 
for organisms that have a set of shared endospore-forming genes43, 
many organisms that do not possess genes involved in spore for-
mation can be recovered by this method (Fig. 2a), suggesting that 
such organisms may possess cell walls that limit the diffusion of 
ethanol into the cell (in the phylum Actinobacteria or among the 
non-spore forming Firmicutes). Regardless, both endospores and 
other ethanol-resistant cell states appear frequently in the human 
fecal microbiota, suggesting that non-endospore environmental 
resistance and dormancy have a previously underappreciated role 
in this ecosystem36.

Extensive sampling of isolate genomes reveals the long- and short-term 
evolution of gut commensal bacteria. The extensive gene content 
variation in B. adolescentis and B. longum prompted us to investigate 
the evolutionary dynamics of their gene repertoires within individ-
uals. We observed that for both Bifidobacterium species, similarity 
in gene content did not necessarily match the phylogenetic history 
of the major lineages that had colonized each host (Fig. 3a,b), con-
firming that gene repertoires are plastic over evolutionary time44. 
However, it is unknown whether gene content can change within 
people after bacterial colonization. We observed that each individ-
ual carried a unique micro-diversity comprising very closely related 
strains. Even within these nearly identical descendants of a single 
ancestral cell, the diversification history (that is, the phylogeny) of 
these strains did not exactly match their similarity in gene content 
(Fig. 3a,b) suggesting multiple gene-gain and gene-loss events (Fig. 
3c–f). As an illustration, this rapid turnover in gene repertoires can 
be observed in donor bk, with two different clades of B. adolescentis 
strains that experienced a convergent loss of a 50-kb gene cluster 
(Fig. 3c–f).
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Thus, the genomic content, and presumably the functional 
capabilities, of strains can change during the lifespan of individu-
als, possibly in response to host-specific environmental factors or 
microbe–microbe interactions.

We next asked whether multiple distantly related strains of a 
given species that co-colonize the same host have gene contents that 
are more similar than expected by phylogeny, suggesting the occur-
rence of niche filtering by the host environment. We observed that 
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multiple distantly related strains of B. adolescentis had colonized 
individual am (Fig. 3b) and that these strains harbored remark-
ably similar gene content. This convergence in gene content sug-
gests that these two distantly related strains stably thrived within 
similar niches. However, whether this convergence occurred within 
individual am due to adaptation via extreme gene loss or gene gain 
rates after colonization, or whether host niche filtering promotes 
the colonization of strains with similar pre-established functions, 
is unknown.

High-resolution genomic time series from FMT donors. To guide 
future in vitro and in vivo studies leveraging the library of isolates, 
we generated culture-independent cross-sectional and longitudinal 
sequencing and metabolomic data from a cohort of 90 FMT donors, 
including the donors used for culturing isolates. We provide longi-
tudinal 16S data from 1,168 samples, producing 10 dense long-term 
time series (up to 1 sample every other day during 18 months; see 
Extended Data Fig. 1c). We generated longitudinal shotgun metage-
nomic data from 563 samples collected from 84 donors, producing 
4 dense long-term time series (up to 1 sample every other day dur-
ing 18 months; see Extended Data Fig. 1d). Finally, we conducted 
metabolite profiling on 179 stool samples from 83 donors that over-
lap with the 16S and metagenomic data, including several metabo-
lomic time series (Extended Data Fig. 1e).

Time-series data improve abundance estimations and ecological 
inferences from metagenomic and 16S data. Averaging multiple 
timepoints may be optimal for precisely quantifying abundances 
of bacterial taxa and functions within individuals. However, there 
has not been a quantitative assessment of how much improvement 
is possible, or of how many samples are needed. Using our longi-
tudinal dataset, we found that each person harbored a stable and 
unique microbiome structure, both in terms of taxa and broad 
functional categories (permutational multivariate analysis of vari-
ance (PERMANOVA), P < 0.0001; Extended Data Figs. 4a and 5a). 
However, we found that the relative abundance of a given ASV 
(equivalent to 100% OTUs) and of a given clusters of orthologous 
groups (COG) category fluctuated substantially from day-to-day, 
but the median relative abundance remained relatively constant 
(Fig. 4a,d). We could predict the variance in our estimate of an ASV 
and COG median relative abundance for a given sample size by ran-
domly subsampling the time series at different levels of temporal 
resolution (Fig. 4b,e). Overall, we found that the variance in our 
estimate was greatly reduced by collecting between five and nine 
timepoints (Fig. 4c,f). Collecting more than nine timepoints had 
a diminishing return for improving accuracy in the median abun-
dance estimate (Fig. 4b,c,e,f). Consequently, to optimally estimate 
the abundance of a given BIO-ML isolate, we recommend calcu-
lating a median abundance by mapping isolate 16S or genomes to 
culturing-independent data on at least five longitudinal samples.

We next tested whether the increased accuracy in estimating 
abundance from averaging time points could help to identify spe-
cies–species correlations. We generated a cross-sectional correla-
tion matrix based on the median abundances of ASVs for the ten 
FMT donors with long, dense time series (Extended Data Fig. 6a). 
We identified all significant correlations between log-transformed 
median ASV relative abundances (Extended Data Fig. 6b) that were 
estimated from the full time series. We then recalculated the cross-
sectional correlation matrix using differently sized subsets of each 
time series, by randomly drawing time points. We found that, when 
only collecting a single sample from each donor, we failed to identify 
~60% of the significant edges that were found in the full network 
(Extended Data Fig. 6c). As the number of subsamples increased, 
the networks began to capture more of the edges from the full time 
series (Extended Data Fig. 6c). Thus, many taxon–taxon correla-
tions can be missed if their abundance is only calculated from a 

single snapshot sample, rather than from a median abundance esti-
mated from multiple timepoints.

In addition to identifying cross-sectional correlations, averag-
ing across timepoints also revealed highly conserved relative abun-
dances of bacterial taxa and functions across donors (Extended 
Data Figs. 4b and 5b). For every donor pair, there was a significant 
positive correlation between the log-median relative abundances of 
ASVs and COGs across different donors (Pearson’s correlation test, 
P < 0.05; Extended Data Figs. 4b and 5b). These correlations were 
weaker for single, randomly drawn time points (Extended Data 
Figs. 4b and 5b).

Bacterial genomic diversification within individuals and life-
history traits are associated with ecological stability and dis-
turbance of the gut ecosystem. Characterizing evolutionary and 
ecological dynamics in the microbiome has been limited by a dearth 
of longitudinal datasets. We found long-term ecological stability at 
the species level (Fig. 4), but this apparent stability might not reflect 
temporal dynamics at the strain level.

We jointly analyzed metagenomic and whole-genome time 
series from the same donor to characterize fine-grained within-
host genomic diversification and genotype dynamics across three 
species. We focused on two abundant non-spore-forming species 
in individual am: Bacteroides vulgatus and Bacteroides ovatus. We 
also analyzed the dynamics of a spore-forming species, Turicibacter 
sanguinis, which is present at much lower abundance in the gut.

We observed that individual am was colonized by two distantly 
related B. vulgatus strains (Fig. 5a), suggesting that two indepen-
dent colonization events had occurred and were followed by stable 
engraftment and very little diversification. Mapping of the metage-
nomic time-series data onto these genomes showed that these 
two primary strains stably coexisted within individual am over 
the sampling period (Fig. 5b,c). This stable coexistence of strains 
of the same species may indicate fine-scale niche partitioning in 
donor am’s gut. B. ovatus also showed stable engraftment and post-
colonization diversification within donor am. The clustering of B. 
ovatus strains into a single clade (Fig. 5d) and the number of SNPs 
observed among genotypes are consistent with a single colonization 
event. Following colonization, within-host genomic diversification 
occurred (Fig. 5e), which was not observed for B. vulgatus in the 
same individual. Three main B. ovatus substrains could be phylo-
genetically defined, and their abundances were tracked over time. 
The three substrains showed nonstationary dynamics, with strain 
3 increasing in abundance relative to the 2 ancestral strains, from 
2–5% shortly after the beginning of the sampling period to 60% by 
day 520 (Fig. 5f).

Finally, we show that donor am was serially colonized by mul-
tiple distantly related T. sanguinis strains (Fig. 5g), which rapidly 
displaced one another over the course of the sampling period. All 
sampled T. sanguinis strains clustered by culturing time points (Fig. 
5h), and their data suggested that there were three independent col-
onization events, followed by full strain replacement (Fig. 5i). These 
strain turnovers may be the result of spore blooms from a pre-exist-
ing cocktail of distantly related strains. They could also result from 
successive colonization events followed by strain displacement. T. 
sanguinis was not abundant enough in the gut for accurate detec-
tion in the metagenome, and we were unable to track the abundance 
of strain genotypes at a high temporal resolution. Thus, we cannot 
completely rule out the possibility that alternative strains were pres-
ent at lower abundance at each time point and were not captured 
by culturing. However, the extensive strain sampling (78 isolates) 
at the intermediate time point day 404 did not yield isolates closely 
related to strains 1 and 3, which supports the hypothesis of serial 
colonization events followed by strain replacement. At the interme-
diate time point (that is, day 404), some SNP diversity was observed  
(Fig. 5h), suggesting that T. sanguinis can rapidly accumulate 
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mutations following a colonization event that probably happened 
between days 168 and 404. Overall, our results support previous 
culture-independent reports indicating that spore-forming gut bac-
teria are more likely to turnover within a person and jump between 
hosts36. This strain-level analysis demonstrates that cross-host dis-
semination can be rapid and can occur multiple times within the 
span of several months, which influences the ecological stability of 
the gut microbiome on clinically relevant timescales.

Donor fecal metabolomes can be distinguished by their bile-
acid profiles, while within-donor variation is driven largely by 
amino acids. We measured a total of 47,930 metabolomic features: 
21,224 features in 7,021 non-redundant clusters, 26,706 unclus-
tered features (no fragments or adducts detected) and 489 anno-
tated compounds.

Unsupervised clustering of metabolomic data discriminates both 
time points and subjects (Extended Data Fig. 7). We focused our 
analyses on donors for which metabolomics data had been gen-
erated for more than six time points. The combination of princi-
pal components (PC) 1 and 2 clearly showed between-donor and 
between-time-point variation (Fig. 6a and Extended Data Fig. 7). 
We defined metabolites as varying across donors or across time 
points by their alignment in PC space: metabolites that aligned par-
allel with within-donor variance (Fig. 6b, red vectors) were asso-
ciated with temporal variation, and metabolites perpendicular to 
these vectors were associated with cross-sectional variation (Fig. 6b,  

black vectors). Compounds contributing to cross-donor differ-
ences include saturated dicarboxylic acids, such as suberic, sebacic 
and azelaic acid, and polyunsaturated fatty, acids such as adrenic 
(C22:4), arachidonic (C20:4), eicosatrienoic (C20:3), docosahexa-
henoic (C22:6) and docosapentaenoic acid (C22:5). Likewise, 
conjugated and unconjugated primary bile acids (tauro- and gly-
cocholate, tauro- and glycochenodeoxycholate), metanephrine, 
urobilin and GABA had donor-specific signatures (Fig. 6c). The 
significant clustering of annotated metabolite profiles by donor 
(PERMANOVA, P < 0.0001) supports prior work showing that 
the gut microbiome is unique to each person and relatively stable 
over time45. The metabolites associated with the temporal varia-
tion included several amino acids, such as serine, lysine, glutamine, 
tyrosine, and citrulline, as well as vitamins, such as nicotinate and 
pantothenate, and a few cholesteryl esters. These shifts in amino 
acids may be due to diet46, inflammation47 or cellular damage in 
the colon48. Despite the pronounced changes in their abundance 
in the stool of subjects through time, these metabolites are tightly 
correlated within subjects (Fig. 6d). The coupling of the dynamics 
of these various metabolites suggests that they are generated by a 
common, and as yet unknown, phenomenon in the gut. Individual 
bacterial taxa were correlated with certain dietary metabolites (for 
example carnitine, associated with red-meat consumption), bile 
acids (for example taurocholate, associated with spore germination) 
and a variety of lipids, which suggests that these factors are impor-
tant for defining bacterial niches in the gut (Extended Data Fig. 8).
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Discussion
Cross-sectional and longitudinal surveys of the human gut microbi-
ome have generated hypotheses of how bacteria influence our health. 

The next phase in microbiome research requires that we begin to 
test these hypotheses directly with isolates. Here, we describe a bio-
bank of human gut bacteria, and a corresponding genomic dataset 
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that greatly expands the existing collections of isolates currently 
available13–19. These isolates cover a large phylogenetic diversity  
(Fig. 1 and 2), and are available for research (see Methods).

Culture-based work can provide rich phenotypic informa-
tion about gut bacteria, including nutritional preferences49, drug 
metabolism50 or host immune response51–53. For example, we  
found that many taxa that do not harbor sporulation genes  
were nonetheless able to survive ethanol treatment (a common 
technique for isolating spores; Fig. 2a). We also demonstrated  
how the genomes from closely related strains isolated from the  
same host can be used to track evolutionary dynamics. High-
resolution multi-omic time-series data provide an additional  
layer of context to the BIO-ML gut bacterial isolates and genomes, 
enable detailed study of within-person strain dynamics, and sig-
nal averaging across timepoints for greater accuracy. Identifying 
within-person turnover in ecological-niche occupancy could be 
translated into personalized probiotic treatments, for example 
following antibiotics or gastrointestinal infections. The BIO-ML 
data are particularly relevant to ongoing clinical studies using 
OpenBiome donors, as they can be used to track engraftment  
of strains, and the genomes of those strains can be correlated  
with clinical outcomes.

In addition to the relatively simple analyses described here, we 
anticipate that the BIO-ML isolate collection will enable new and 
more powerful experimental designs. In particular, complex syn-
thetic communities can be grown reproducibly in vitro using strains 
isolated from a single donor, and their dynamics can be compared 
with those of the same strains in vivo. Synthetic isolate communities 
can be designed on the basis of genomic information to efficiently 
perform a given function relevant for health, such as short-chain 
fatty acid production. The integration of previously underrepre-
sented clades, such as Turicibacter and Akkermansia, into these 
experimental designs will enable new mechanistic studies on these 
key gut bacteria.

The BIO-ML collection is a unique resource, providing open 
access to thousands of clinically relevant, and in some cases under-
represented, strains and their accompanying omics data. With 
available cultivable isolates, this comprehensive resource has the 
potential to elucidate complex dynamics of the human gut microbi-
ome and enable unprecedented hypothesis-driven research.

Online content
Any methods, additional references, Nature Research reporting 
summaries, source data, statements of code and data availability and 
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associated accession codes are available at https://doi.org/10.1038/
s41591-019-0559-3.

Received: 11 March 2019; Accepted: 23 July 2019;  
Published online: 2 September 2019

References
	1.	 Shen, T.-C. D. et al. Engineering the gut microbiota to treat 

hyperammonemia. J. Clin. Invest. 125, 2841–2850 (2015).
	2.	 Ronda, C., Chen, S. P., Cabral, V., Yaung, S. J. & Wang, H. H. Metagenomic 

engineering of the mammalian gut microbiome in situ. Nat. Methods 16, 
167–170 (2019).

	3.	 Holmes, E. et al. Therapeutic modulation of microbiota-host metabolic 
interactions. Sci. Transl. Med. 4, 137rv6 (2012).

	4.	 van Nood, E. et al. Duodenal infusion of donor feces for recurrent 
Clostridium difficile. N. Engl. J. Med. 368, 407–415 (2013).

	5.	 Kassam, Z., Lee, C. H., Yuan, Y. & Hunt, R. H. Fecal microbiota 
transplantation for Clostridium difficile infection: systematic review and 
meta-analysis. Am. J. Gastroenterol. 108, 500–508 (2013).

	6.	 Moayyedi, P. et al. Fecal microbiota transplantation induces remission in 
patients with active ulcerative colitis in a randomized controlled trial. 
Gastroenterology 149, 102–109.e6 (2015).

	7.	 Ratner, M. Microbial cocktails join fecal transplants in IBD treatment trials. 
Nat. Biotechnol. 33, 787–788 (2015).

	8.	 Mullish, B. H., McDonald, J. A. K., Thursz, M. R. & Marchesi, J. R. Fecal 
microbiota transplant from a rational stool donor improves hepatic 
encephalopathy: a randomized clinical trial. Hepatology 66,  
1354–1355 (2017).

	9.	 Flameling, I. A. & Rijkers, G. T. Fecal Microbiota Transplants as a Treatment 
Option for Parkinson’s Disease. Gut Microbiota - Brain Axis https://doi.
org/10.5772/intechopen.78666(2018).

	10.	Fischer, M., Bittar, M., Papa, E., Kassam, Z. & Smith, M. Can you cause 
inflammatory bowel disease with fecal transplantation? A 31-patient 
case-series of fecal transplantation using stool from a donor who later 
developed Crohn’s disease. Gut Microbes 8, 205–207 (2017).

	11.	Smillie, C. S. et al. Strain tracking reveals the determinants of bacterial 
engraftment in the human gut following fecal microbiota transplantation. Cell 
Host Microbe 23, 229–240.e5 (2018).

	12.	Li, S. S. et al. Durable coexistence of donor and recipient strains after fecal 
microbiota transplantation. Science 352, 586–589 (2016).

	13.	Human Microbiome Jumpstart Reference Strains Consortium. et al. A catalog 
of reference genomes from the human microbiome. Science 328, 994–999 
(2010).

	14.	Faith, J. J. et al. The long-term stability of the human gut microbiota. Science 
341, 1237439–1237439 (2013).

	15.	Goodman, A. L. et al. Extensive personal human gut microbiota culture 
collections characterized and manipulated in gnotobiotic mice. Proc. Natl 
Acad. Sci. USA 108, 6252–6257 (2011).

	16.	Browne, H. P. et al. Culturing of ‘unculturable’ human microbiota reveals 
novel taxa and extensive sporulation. Nature 533, 543–546 (2016).

	17.	Lagier, J.-C. et al. Culture of previously uncultured members of the human 
gut microbiota by culturomics. Nat. Microbiol. 1, 16203 (2016).

	18.	Zou, Y. et al. 1,520 reference genomes from cultivated human gut bacteria 
enable functional microbiome analyses. Nat. Biotechnol. 37, 179–185 (2019).

	19.	Forster, S. C. et al. A human gut bacterial genome and culture collection for 
improved metagenomic analyses. Nat. Biotechnol. 37, 186–192 (2019).

	20.	Truong, D. T., Tett, A., Pasolli, E., Huttenhower, C. & Segata, N. Microbial 
strain-level population structure and genetic diversity from metagenomes. 
Genome Res. 27, 626–638 (2017).

	21.	Zhao, S. et al. Adaptive evolution within the gut microbiome of individual 
people. Preprint at https://doi.org/10.1101/208009 (2017).

	22.	Greenblum, S., Carr, R. & Borenstein, E. Extensive strain-level copy-number 
variation across human gut microbiome species. Cell 160, 583–594 (2015).

	23.	Garud, N. R., Good, B. H., Hallatschek, O. & Pollard, K. S. Evolutionary 
dynamics of bacteria in the gut microbiome within and across hosts. Preprint 
at https://doi.org/10.1101/210955 (2017).

	24.	Ahern, P. P., Faith, J. J. & Gordon, J. I. Mining the human gut microbiota  
for effector strains that shape the immune system. Immunity 40,  
815–823 (2014).

	25.	Bron, P. A., van Baarlen, P. & Kleerebezem, M. Emerging molecular insights 
into the interaction between probiotics and the host intestinal mucosa. Nat. 
Rev. Microbiol. 10, 66–78 (2011).

	26.	Barboza, M. et al. Glycoprofiling bifidobacterial consumption of galacto-
oligosaccharides by mass spectrometry reveals strain-specific, preferential 
consumption of glycans. Appl. Environ. Microbiol. 75, 7319–7325 (2009).

	27.	Rossi, M. et al. Fermentation of fructooligosaccharides and inulin by 
bifidobacteria: a comparative study of pure and fecal cultures. Appl. Environ. 
Microbiol. 71, 6150–6158 (2005).

	28.	Lopez-Siles, M. et al. Cultured representatives of two major phylogroups of 
human colonic Faecalibacterium prausnitzii can utilize pectin, uronic acids, 
and host-derived substrates for growth. Appl. Environ. Microbiol. 78,  
420–428 (2012).

	29.	Haiser, H. J. et al. Predicting and manipulating cardiac drug inactivation  
by the human gut bacterium Eggerthella lenta. Science 341,  
295–298 (2013).

	30.	Wilson, I. D. & Nicholson, J. K. Gut microbiome interactions  
with drug metabolism, efficacy, and toxicity. Transl. Res. 179,  
204–222 (2017).

	31.	Cover, T. L. Helicobacter pylori diversity and gastric cancer risk. MBio 7, 
e01869–15 (2016).

	32.	Arthur, J. C. et al. Intestinal inflammation targets cancer-inducing activity of 
the microbiota. Science 338, 120–123 (2012).

	33.	Conway, T. & Cohen, P. S. Commensal and pathogenic Escherichia coli 
metabolism in the gut. Microbiol Spectr 3, https://doi.org/10.1128/
microbiolspec.MBP-0006-2014 (2015).

	34.	Rettedal, E. A., Gumpert, H. & Sommer, M. O. A. Cultivation-based 
multiplex phenotyping of human gut microbiota allows targeted recovery of 
previously uncultured bacteria. Nat. Commun. 5, 4714 (2014).

	35.	Lau, J. T. et al. Capturing the diversity of the human gut microbiota through 
culture-enriched molecular profiling. Genome Med. 8, 72 (2016).

	36.	Kearney, S. M. et al. Endospores and other lysis-resistant bacteria comprise a 
widely shared core community within the human microbiota. ISME J. 12, 
2403-2416 (2018).

	37.	Fodor, A. A. et al. The ‘Most Wanted’ taxa from the human microbiome for 
whole genome sequencing. PLoS ONE 7, e41294 (2012).

	38.	Derrien, M., Vaughan, E. E., Plugge, C. M. & de Vos, W. M. Akkermansia 
muciniphila gen. nov., sp. nov., a human intestinal mucin-degrading 
bacterium. Int. J. Syst. Evol. Microbiol. 54, 1469–1476 (2004).

	39.	Schneeberger, M. et al. Akkermansia muciniphila inversely correlates with the 
onset of inflammation, altered adipose tissue metabolism and metabolic 
disorders during obesity in mice. Sci. Rep. 5, 16643 (2015).

	40.	Dao, M. C. et al. Akkermansia muciniphila and improved metabolic health 
during a dietary intervention in obesity: relationship with gut microbiome 
richness and ecology. Gut 65, 426–436 (2016).

	41.	Sokol, H. et al. Faecalibacterium prausnitzii is an anti-inflammatory 
commensal bacterium identified by gut microbiota analysis of Crohn disease 
patients. Proc. Natl Acad. Sci. USA 105, 16731–16736 (2008).

	42.	Miquel, S. et al. Faecalibacterium prausnitzii and human intestinal health. 
Curr. Opin. Microbiol. 16, 255–261 (2013).

	43.	Galperin, M. Y. et al. Genomic determinants of sporulation in Bacilli and 
Clostridia: towards the minimal set of sporulation-specific genes. Environ. 
Microbiol. 14, 2870–2890 (2012).

	44.	Daubin, V., Moran, N. A. & Ochman, H. Phylogenetics and the cohesion of 
bacterial genomes. Science 301, 829–832 (2003).

	45.	Lozupone, C. A., Stombaugh, J. I., Gordon, J. I., Jansson, J. K. & Knight, R. 
Diversity, stability and resilience of the human gut microbiota. Nature 489, 
220–230 (2012).

	46.	Windey, K., De Preter, V. & Verbeke, K. Relevance of protein fermentation to 
gut health. Mol. Nutr. Food Res. 56, 184–196 (2012).

	47.	Jansson, J. et al. Metabolomics reveals metabolic biomarkers of Crohn’s 
disease. PLoS One 4, e6386 (2009).

	48.	Weir, T. L. et al. Stool microbiome and metabolome differences  
between colorectal cancer patients and healthy adults. PLoS One 8,  
e70803 (2013).

	49.	Tramontano, M. et al. Nutritional preferences of human gut bacteria reveal 
their metabolic idiosyncrasies. Nat. Microbiol. 3, 514–522 (2018).

	50.	Maier, L. et al. Extensive impact of non-antibiotic drugs on human gut 
bacteria. Nature 555, 623–628 (2018).

	51.	Atarashi, K. et al. Treg induction by a rationally selected mixture  
of Clostridia strains from the human microbiota. Nature 500,  
232–236 (2013).

	52.	Wlodarska, M. et al. Indoleacrylic acid produced by commensal 
peptostreptococcus species suppresses inflammation. Cell Host Microbe 22, 
25–37.e6 (2017).

	53.	Tanoue, T. et al. A defined commensal consortium elicits CD8 T cells and 
anti-cancer immunity. Nature 565, 600–605 (2019).

Acknowledgements
The authors are thankful to M. Sovie, C. Kim, W. Kelley, E. Lee, W. Pettee, J. Watson 
and P. Panchal from OpenBiome for their assistance in processing materials and donor 
metadata used in this study. This work was funded by a grant from the Broad Institute 
(Broad Next 10 grant 4000017).

Author contributions
M.P., M.G., S.M.G, R.J.X. and E.J.A. designed the project. M.P. and M.G. built the 
library of bacterial isolates and whole genomes. M.P. and M.G analyzed whole-genome 

Nature Medicine | VOL 25 | SEPTEMBER 2019 | 1442–1452 | www.nature.com/naturemedicine 1451

https://doi.org/10.1038/s41591-019-0559-3
https://doi.org/10.1038/s41591-019-0559-3
https://doi.org/10.5772/intechopen.78666
https://doi.org/10.5772/intechopen.78666
https://doi.org/10.1101/208009
https://doi.org/10.1101/210955
https://doi.org/10.1128/microbiolspec.MBP-0006-2014
https://doi.org/10.1128/microbiolspec.MBP-0006-2014
http://www.nature.com/naturemedicine


Resource Nature Medicine

sequence data. S.M.K., M.G. and M.P. analyzed the sporulation and ethanol-resistance 
data. S.M.G. analyzed the 16S data. S.M.G. and X.J. analyzed the metagenomics data. 
J.A.-P. analyzed the metabolomics data. M.P., S.M.K. and A.R.P. designed the culturing 
protocols. M.P. and B.B. curate the library of isolates. S.Z. and T.D.L. provided technical 
advice for WGS library preparation and analysis. P.K.S. and M.S. provided OpenBiome 
samples and associated metadata. S.R., J.E.A, S.A.R., J.L. and H.V. generated the 16s and 
metagenomics data. C.C., K.B., A.D., J.S. and K.A.P. generated the metabolomics data. 
M.P., M.G., S.M.G. and E.J.A. wrote the paper, with input from all authors. E.J.A. and 
R.J.X. obtained funding and supervised the project.

Competing interests
M.S. and E.J.A. are co-founders and shareholders of Finch Therapeutics, a company that 
specializes in microbiome-targeted therapeutics.

Additional information
Extended data is available for this paper at https://doi.org/10.1038/s41591-019-0559-3.
Supplementary information is available for this paper at https://doi.org/10.1038/
s41591-019-0559-3.
Reprints and permissions information is available at www.nature.com/reprints.
Correspondence and requests for materials should be addressed to R.J.X. or E.J.A.
Peer review information: Alison Farrell is the primary editor on this article and 
managed its editorial process and peer review in collaboration with the rest of the 
editorial team.
Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in 
published maps and institutional affiliations.
© The Author(s), under exclusive licence to Springer Nature America, Inc. 2019

Nature Medicine | VOL 25 | SEPTEMBER 2019 | 1442–1452 | www.nature.com/naturemedicine1452

https://doi.org/10.1038/s41591-019-0559-3
https://doi.org/10.1038/s41591-019-0559-3
https://doi.org/10.1038/s41591-019-0559-3
http://www.nature.com/reprints
http://www.nature.com/naturemedicine


ResourceNature Medicine

Methods
Study cohort and sample collection. Stool samples were obtained from 
OpenBiome (https://www.openbiome.org/), a non-profit stool bank, under a 
protocol approved by the institutional review boards (IRBs) at MIT and the 
Broad Institute (IRB protocol ID no. 1603506899). Subjects were healthy people 
screened by OpenBiome to minimize the potential for carrying pathogens. They 
were 19–45 years of age (28 years old on average) and had body mass indexes of 
17.5–29.8 (23.4 on average) at initial sampling. Individuals could be called healthy 
with confidence at recruitment based on the absence of ongoing symptoms, 
pain and medication, and based on past history of gastrointestinal conditions, 
autoimmune and inflammatory diseases, cardiovascular and metabolic conditions, 
neurological conditions, psychological conditions, cancer and infectious diseases. 
Supplementary Table 2 contains health, disease and social-history metadata on 
each subject. Subjects were deidentified before receipt of samples.

Raw stool samples were diluted 1:10 in 12.5% glycerol buffer and 0.9% NaCl, 
homogenized and filtered through a 330-µm filter. A total of 1,207 stool samples 
were obtained from 90 subjects from July 2014 to May 2016. Detailed information 
about samples used for 16S, metagenomic, metabolomic and/or isolation is in 
Supplementary Table 3.

Culture and isolation of bacterial strains. To culture and isolate bacteria, we used 
11 OpenBiome stool samples collected across 11 healthy donors. In addition, we 
used 10 additional samples from one donor (am), longitudinally collected between 
December 2014 and May 2016.

To culture an exhaustive representation of the diversity of human gut bacteria, 
human fecal samples were processed anaerobically at every step in a chamber using 
gas monitors to constantly control physicochemical conditions (5% Hydrogen, 20% 
Carbon dioxide, balanced with nitrogen). Human fecal samples were diluted in 
prereduced (anaerobic) PBS (with 0.1 % l-cysteine hydrochloride hydrate). Diluted 
samples were then plated onto prereduced agar plates and incubated anaerobically 
at 37 °C for 7 d.

Nonselective media were first used to culture diverse groups of organisms 
from the gut microbiota. Then a series of selective culturing methods were 
used to isolate additional members of more specific taxonomic groups. The 
media used were comprised of commercially available components, without 
the need of complex ingredients like rumen fluid or fecal extracts. After 
incubation, bacteria were isolated by picking individual colonies with an 
inoculation loop and streaking them onto a second prereduced agar plate. 
After 2 d of incubation at 37 °C, 1 colony from each individual was re-streaked 
again onto another agar plate for 2 more days of incubation, increasing the 
purity of individual colonies. One colony from each individual streak was then 
inoculated in liquid medium in a 96-well culture plate. After 2 d of anaerobic 
incubation at 37 °C, the taxonomy of the isolate was identified using 16S rRNA 
gene Sanger sequencing (starting at the V4 region). We first amplified the full 
16S rRNA gene by PCR (27F 5′-AGAGTTTGATCMTGGCTCAG-3′; 1492R 
5′-GGTTACCTTGTTACGACTT-3′) and then generated a ~1-kb-long sequence 
by Sanger reaction (U515 5′-GTGCCAGCMGCCGCGGTAA-3′). All isolates were 
stored in −80 °C freezers with prereduced glycerol solution as a cryoprotectant. 
Detailed information about isolates is in Supplementary Table 1.

DNA extraction, library construction and Illumina sequencing of whole 
genomes. To extract the whole-genome DNA of each individual colony, we used 
the DNeasy UltraClean96 MicrobioalKit (Qiagen) and the PureLinkPro96_
gDNAkit (Invitrogen). Genomic DNA libraries were constructed from 1.2 ng of 
DNA using the Nextera DNA Library Preparation kit (Illumina), with reaction 
volumes scaled accordingly. Prior to sequencing, libraries were pooled by collecting 
an equal quantity of each library from batches of 250 samples. Insert sizes and 
concentrations of each pooled library were measured using an Agilent Bioanalyzer 
DNA 1000 kit (Agilent Technologies). Paired-end 150-bp read sequencing was 
performed using an Illumina NextSeq 500 instrument (Illumina Inc) at the  
Broad Institute.

Draft assembly and annotation of whole-genome sequences. Reads were first 
demultiplexed using in-house scripts. We used Trimmomatic v0.36 (ref. 54) for the 
quality filtering of data (with parameters PE -phred33 LEADING:3 TRAILING:3 
SLIDINGWINDOW:5:20 MINLEN:50) and to remove barcodes and Illumina 
adapters. Reads were assembled de novo into contigs using SPAdes v.3.9.1 (ref. 55) 
(with parameter—careful). To iteratively improve genomic assemblies, we used 
SSPACE v3.0 and GapFiller v1-10 (ref. 56) to scaffold contigs and to fill sequence 
gaps (with default parameters). Scaffolds smaller than 1 kb were removed from 
genome assemblies. We aligned all reads back to the assembly to compute genome 
coverage using BBmap v37.68 (https://jgi.doe.gov/data-and-tools/bbtools/) and 
the covstats option (with default parameters). The final assemblies were annotated 
using Prokka v1.12 (ref. 57) (with default parameters).

Assessing assembly quality. We measured genome assembly statistics using 
CheckM v1.0.7 (ref. 58) (with parameters lineage_wf —tab_table -x fna Prokka_
annotations/). Although we implemented many sanity checks in the culturing  
and isolation protocols used to build the isolate library, final isolate stocks might  

still have contained mixtures of multiple strains, or sometimes even different 
species. Consequently, we included several contamination-removal steps in our 
genome assembly pipeline. Small contigs with extreme coverage and similarity with  
different taxonomic groups are often a signature of contamination and impurity 
of the original colonies. Assemblies with contamination levels higher than 10 
(as measured by CheckM, only 2% of original genomes) were cleaned using the 
following conservative approach: we sorted contigs by coverage, and we used the 
Strucchange R package to detect breakpoints in the distribution of coverage across 
contigs (with cov defined as a sorted vector of contig converages, the function br
eakpoints(log(cov)~seq(1,length(cov))) was used to calculate the breakpoints. If 
multiple jumps in coverage data were detected, the contig with the highest coverage  
was selected as the breakpoint. Then, all contigs with higher or equal coverage to the 
breakpoint contig are excluded from the assembly file. We re-run CheckM on each 
filtered genome to measure contamination again. We chose to exclude all assemblies 
that still exhibited contamination levels higher than 10. Finally, after calling for 
single-nucleotide polymorphisms (SNPs) within all bacterial species of the library 
(see ‘SNP calling’), we built phylogenetic trees to detect genomes that were obvious 
contaminants and removed those from the library. The final median contamination 
is 0.3%. We further removed all assemblies that had genome completeness lower 
than 90%. All summary and quality statistics can be found in Supplementary Table 4.  
Reads for isolate genomes of the HBC collection19 were assembled and checked for 
contamination using the same assembly pipeline as described above.

Taxonomy calling. We used whole-genome information to call for taxonomies 
at the species level. We used an approach similar to the open-reference method 
used to cluster sequences and assign taxonomies from amplicon (usually 16S) 
sequencing data. We used the Mash distance59 (with default parameters) to 
compute the pairwise distances across all 3,632 genomes. Mash computes a 
distance between two genomes on the basis of the Jaccard Index, which accounts 
for both mutation and gene-content differences. It was recently shown that 
clustering genomes using a Mash distance threshold of ≤0.05 is equivalent to using 
an average nucleotide identity threshold of ≥95%, and reconstructs groups of 
genomes that are in good agreement with the NCBI bacterial species taxonomy59 
(an ANI of ≥95% has historically been used to define bacterial species). We used 
an unsupervised hierarchical clustering approach to group genomes that had Mash 
distances ≤0.05 into taxonomic units using the bClust function from the micropan 
R package. We then measured the genetic distance between the representative 
genome of each species cluster (defined as the genome with the highest N50) 
and a reference set of 79,226 non-contaminated complete and draft genomes 
downloaded from the NCBI FTP repository (ftp://ftp.ncbi.nlm.nih.gov/genomes/) 
on 27 March 2017. As species names can be incomplete or incorrect for NCBI draft 
genomes, we manually curated Mash results to assign a taxonomy to each cluster. 
We assigned ‘Unknown_genus’ and ‘Genus_sp.’ names to clusters that had no hit in 
the NCBI genome collection or that are closely related to a characterized genus but 
had no hit to a known species within this genus, respectively. Further phylogenetic 
and comparative genomics analyses will be needed in the future to refine the 
taxonomic assignments of these genomes. All genome taxonomies are compiled in 
Supplementary Tables 1 and 4.

SNP calling. We aligned reads against reference genomes using Bowtie2 v2.2.6 
(ref. 60) (with parameters—n-ceil 0,0.01 —dovetail —no-mixed —very-sensitive -X 
2000). Potential single-nucleotide variants were called with Samtools v1.2 (ref. 61).  
We then used a series of functions from the PicardTools (v2.6.0) and GATK (v.3.7) 
packages with a set of very conservative filters to improve read alignments and 
remove false positive polymorphisms. The objective is to filter out variants that 
are either caused from sequencing errors or from systematic errors at particular 
genomic positions (for example, misalignment near insertion/deletion regions).

Briefly, we used the MarkDuplicates (with parameters REMOVE_
DUPLICATES = true) and AddOrReplaceReadGroups (with default parameters) 
functions from the PicardTools package to mask regions with very high coverage, 
which may reflect duplication events. We then recalibrated base-quality scores 
using a set of functions from the GATK package. Base-quality score recalibration 
(BQSR) is a two-step process that models sequencing errors and adjusts the quality 
scores accordingly. First, haplotypes are called (HaplotypeCaller function with 
parameters —sample_ploidy 1 -mmq 40 —genotyping_mode DISCOVERY) on 
each individual sample, and variants are filtered (VariantFiltration function, with 
parameters described below). The BQSR is run (BaseRecalibrator function) to 
produce a recalibration table using the filtered SNPs as a reference. The reads 
with recalibrated quality scores are then used in a second phase of haplotype 
calling, variant filtering and base recalibrating. After these two steps, convergence 
of quality scores is checked (AnalyzeCovariates function). All individual gVCF 
files are then merged together (CombineGVCFs function) to jointly genotype all 
samples (GenotypeGVCFs function). We only conserved variants that fulfill all of 
the following criteria:
•	 A minimum read-mapping quality required to consider a read for calling 

higher than 40.
•	 A quality by depth (QD) higher than 2.0. QD is the Phred-scaled probability 

that a polymorphism exists at this site given sequencing data, normalized by 
allele depth.
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•	 A strand bias (Phred-scaled probability that there is strand bias at the site) 
estimated using Fisher’s exact test (FS) lower than 60.

•	 A strand bias estimated by the symmetric odds ratio test (SOR) lower than 4.0 
(this is another way to control for strand bias).

•	 A root mean square mapping quality over all the reads at the site (MQ) higher 
than 40.

•	 A rank sum test comparing mapping qualities of reads supporting the refer-
ence allele versus the alternate allele (MQRankSum) higher than −4.0.

•	 A rank sum test comparing the relative positioning of reference versus alter-
nate alleles within reads (ReadPosRankSum) higher than −2.0.

•	 A rank sum test comparing the reference versus alternate base-quality scores 
(BaseQRankSum) higher than −2.0.

•	 A rank sum test for hard-clipped bases on reference versus alternate reads 
(ClippingRankSum) higher than −2.0.

When a variant in a given sample did not pass these filters, the allele at this 
position was assigned a ‘N’. In addition, when a variant was not supported by more 
than 10 reads, the allele is assigned a ‘N’. When an ALT variant has a normalized 
Phred-scaled genotype likelihood (PL) lower than 50, the variant is also assigned 
a ‘N’. When a given site contained more than 20% of Ns, the polymorphic site was 
discarded. Also, all positions that had a low average read depth across all samples 
were removed (all sites with a ratio between total read count across all samples and 
the total number of samples lower than 30 were discarded).

Finally, we removed variants that were likely to result from recombination and 
not de novo mutations using a sliding-window approach. When more than 4 SNPs 
occurred within a region of 4 kb, all polymorphic positions were removed from the 
SNP alignment.

Reference genomes used to call for SNPs in this study were B. adolescentis 
American Type Culture Collection (ATCC) 15703, B. longum ATCC 15697  
B. ovatus ATCC 8483, B. vulgatus ATCC 8482, T. sanguinis PC909 and  
A. muciniphila 54 46.

Core- and pan-genome analyses. We used Roary v3.9.1 (ref. 62) to reconstruct the 
core- and pan-genome of B. longum and B. adolescentis strains (with parameters -e 
-n -i 90 -cd 95 -r). To reconstruct gene families, we set the minimum percentage 
identity between protein sequences to 90%, and the minimum frequency of isolates 
in which a gene must be present to belong to the core genome to 95%. To include 
outgroups, all complete genomes for these two Bifidobacterium species present on 
the NCBI FTP repository (ftp://ftp.ncbi.nlm.nih.gov/genomes/) were also input 
to Roary. Outgroup B. adolescentis genomes are 22L, ATCC 15703 and BBMN23. 
Outgroup B. longum genomes are ATCC 15697, JDM301, BBMN68, JCM 1217, 
157F, KACC 91563, BXY01, GT15, 105-A, BT1, BG7, NCIMB 8809, CCUG 30698, 
35624 and AH1206.

Phylogenetic reconstructions. We used DNAPARS (parsimony) from the  
PHYLIP package v3.6 (with default parameters) and RAxML v8.0.0 (maximum 
likelihood) (with parameters -m ASC_GTRGAMMA —asc-corr = lewis) to 
reconstruct phylogenetic trees from the reconstructed SNP alignments of each 
bacterial species analyzed in this study. Because SNP alignments do not contain 
invariable positions, we corrected for the ascertainment bias (using the Lewis 
correction) when reconstructing trees with RAxML to correct likelihoods and 
branch-length estimates.

To reconstruct the phylogenomic tree of all 3,632 genomes, we first built a 
concatenated alignment of 47 nearly universal and single-copy ribosomal protein 
families. We used Diamond v0.8.22.84 (ref. 63) (with parameters blastx —more-
sensitive -e 0.000001 —id 35 —query-cover 80) to BLAST all 3,632 proteomes 
against the RiboDB database (v1.4.1) of bacterial ribosomal protein genes64. 
We excluded proteins bL17, bS16, bS21, uL22, uS3 and uS4, as they were not 
sufficiently distributed across all genomes. In each RiboDB gene family, we 
excluded genomes that contained gene duplicates. Then, we aligned all protein 
families individually with Mafft v7.310 (with parameter —auto). We filtered 
out misaligned sites using BMGE v1.12 (with parameters -t AA -g 0.95 -m 
BLOSUM30) and concatenated all individual alignments using Seaview v4.7.  
We reconstructed the phylogenomic tree using FastTree v2.1.10 (with parameters 
-lg –gamma).

DNA extraction from raw stool samples. For DNA extraction, the MoBio 
Powersoil 96 kit (now Qiagen Cat No./ID: 12955-4) was used with minor 
modifications. All samples were thawed on ice, and between 625 µL and 1 mL 
homogenized stool was transferred to the MoBio High Throughput PowerSoil plate 
(12955-4-BP) and centrifuged at 4,000g for 10 min. Supernatant was removed, and 
750 µL of bead solution was added along with 60 µL of C1 solution. Samples were 
bead beaten on the TissueLyzer at 20 Hz for 10 minutes. The plate was then rotated 
180 degrees and beaten for another 10 minutes at 20 Hz to ensure even beating 
across all wells. Samples were then centrifuged at 4,500g for 6 min and 850 µL of 
supernatant was transferred to a clean 1-mL collection plate with the remainder of 
the protocol, as per the manufacturer’s instructions.

16S library preparation and sequencing. 16S rRNA gene libraries targeting 
the V4 region of the 16S rRNA gene were prepared by first normalizing 

template concentrations and determining optimal cycle number by way of 
qPCR. Two 25 µL reactions for each sample were amplified with 0.5 units of 
Phusion with 1X High Fidelity buffer, 200 μM of each dNTP, 0.3 μM of 515 F 
(5′-AATGATACGGCGACCACCGAGATCTACACTATGGTAATTGTG
TGCCAGCMGCCGCGGTAA-3′) and 806rcbc0 (5′-CAAGCAGAAGACGGC
ATACGAGATTCCCTTGTCTCCAGTCAGTCAGCCGGACTACHVGGGTW
TCTAAT-3′). 0.25 µL 100x SYBR was added to each reaction, and samples were 
quantified using the formula 1.75(ΔCt). To ensure minimal overamplification, each 
sample was diluted to the lowest concentration sample, amplifying with this sample 
optimal cycle number for the library construction PCR. Four 25-µL reactions 
were prepared per sample with master mix conditions listed above, without 
SYBR. Each sample was given a unique reverse barcode primer from the Golay 
primer set65. Replicates were then pooled and cleaned via Agencourt AMPure 
XP-PCR purification system. Purified libraries were diluted 1:100 and quantified 
again via qPCR (two 25-µL reactions, 2× iQ SYBR SUPERMix (Bio-Rad, ref no. 
1708880) with Read 1 (5′-TATGGTAATTGTGTGYCAGCMGCCGCGGTAA-3′), 
Read 2 (5′-AGTCAGTCAGCCGGACTACNVGGGTWTCTAAT-3′)). 
Undiluted samples were normalized by way of pooling using the formula 
mentioned above. Pools were quantified by Qubit (Life Technologies, Inc.) and 
normalized into a final pool by Qubit concentration and number of samples. 
Final pools were sequenced on an Illumina MiSeq 300 using custom index 
5′-ATTAGAWACCCBDGTAGTCCGGCTGACTGACT-3′ and custom Read 1 and 
Read 2, mentioned above.

ASV and taxonomy calling of the 16S sequencing data. 16S amplicon sequence 
data was split into separate, forward and reverse, demultiplexed fastq files for each 
sample. These paired-end fastq files were used as input for DADA2 (ref. 66) in R 
v3.4.3, run using default parameters. Amplicon sequence variants (ASVs) were 
estimated by DADA2 and summarized in a ASV-by-sample abundance matrix. 
Taxonomic identities were assigned using the RDP classifier and the RDP trainset 
16 (https://zenodo.org/record/801828).

Metagenomic library preparation and sequencing. Whole-genome fragment 
libraries were prepared as follows. Metagenomic DNA samples were quantified 
by Quant-iT PicoGreen dsDNA Assay (Life Technologies) and normalized to 
a concentration of 50 pg/µL. Illumina sequencing libraries were prepared from 
100–250 pg of DNA using the Nextera XT DNA Library Preparation kit (Illumina), 
according to the manufacturer’s recommended protocol, with reaction volumes 
scaled accordingly. Prior to sequencing, libraries were pooled by collecting 
equal volumes (200 nl) of each library from batches of 96 samples. Insert sizes 
and concentrations for each pooled library were determined using an Agilent 
Bioanalyzer DNA 1000 kit (Agilent Technologies). Libraries were sequenced on 
HiSeq 2 × 101 to yield ~10 million PE reads.

Post-sequencing de-multiplexing and BAM and Fastq files are generated using 
the Picard suite (https://broadinstitute.github.io/picard/command-line-overview.
html).

COG genes construction and abundance estimation. Shotgun metagenomic 
sequencing data contained 1.5 × 107 reads on average per sample. These data 
were quality-trimmed with trimmomatic with parameters ‘LEADING:20 
TRAILING:20 MINLEN:50’. We removed reads that align to the human reference 
genome (hg19) using BWA and default parameters. PCR duplicate sequences were 
removed with fastuniq. Post filtering, samples contain 9.8 × 106 reads on average 
per sample.

For each sample, the metagenomic data were assembled with metaSPAdes67. 
Protein-coding genes were predicted from each assembly with Prodigal68 and then 
combined and clustered with CD-HIT (‘-d 0 -n 10 -l 100 -p 1 -G 0 -c 0.95 -aS 0.8 
-M 0 -T 0’) to create a nonredundant gene set69. The gene set was then annotated 
with COG terms by rps-blast search70. Metagenomic reads from each sample were 
then aligned to the CDSs of the nonredundant gene set with bowtie2 (ref. 60). The 
mean coverage of each gene in each sample was calculated. The sum of the mean 
coverages for all genes of a given COG family was used to estimate the abundance 
of the COG family. The relative abundance was obtained by dividing the absolute 
COG abundance by the total coverage of the COG-annotated genes for the sample. 
The coverage for each COG class in each sample was calculated by summing the 
relative abundance of all COG families belonging to the same class.

Metagenomics data, whole genomes and strain dynamics. We tracked 
longitudinal variation in abundance between the main strains of B. vulgatus and 
B. ovatus within individual am. SNPs were identified by mapping isolated genome 
sequencing data to NCBI reference genomes (see ‘SNP calling’). Nucleotide alleles 
at SNP positions were extracted and concatenated into individual sequences for 
each strain. The sequences were then joined together to make a multiple sequence 
alignment for each species, and trees were reconstructed by parsimony (see 
‘Phylogenetic reconstructions’). Metagenomics sequencing reads were aligned to 
each isolate genome of B. vulgatus and B. ovatus, assembled from the same donor 
with Bowtie2 (ref. 60), using default parameters. The counts of reads mapped to 
each allele at the SNP position were calculated. The mean frequency of the SNPs 
specific to each main strain was used to estimate their strain relative abundances.
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Metabolomics. Stool metabolites were profiled using four complimentary liquid 
chromatography tandem mass spectrometry (LC–MS) methods designed to 
measure a broad range of metabolites, as described previously71. Briefly, two 
hydrophilic interaction liquid chromatography (HILIC) methods were used 
for the analysis of water soluble polar metabolites in positive (HILIC-pos) or 
negative (HILIC-neg) ion mode, and two reverse-phase chromatography methods 
for measuring lipids in positive ionization mode (C8-pos) or metabolites of 
intermediate polarity, such as bile acids and free fatty acids using a C18 column 
in negative ionization mode (C18-neg). For a detailed description of the methods 
see Supplementary Methods. Raw data were processed using TraceFinder 3.1 
software (Thermo Fisher Scientific; Waltham, MA) and Progenesis QI (Nonlinear 
Dynamics; Newcastle upon Tyne, UK). Pooled plasma samples were analyzed 
after intervals of approximately 20 participant samples to enable standardizing 
temporal drift in instrument response over time and between batches. For each 
method, metabolite identities were confirmed using authentic reference standards 
or reference samples.

Owing to differences in stool water content, stool metabolomic data were 
median scaled. For this purpose, the medians of all feature intensities in each 
sample (per LC–MS method) were computed. The median of these values was then 
used to calculate a scalar for each sample that, when multiplied by each metabolite 
intensity for each sample, yields a data set where the median intensities across all 
samples are equal. Analyses were conducted using the data obtained from all four 
LC-MS methods after removal of features observed in <95% of the samples and 
imputing missing values with half of the minimum observed measurement for each 
feature. All analyses and figures were done using R (version 3.4.3). Dendrograms 
were generated using the Spearman correlation coefficient as the distance 
metric, and the Ward D clustering method using function in the stats package on 
samples from subjects for whom data were available from at least six time points. 
Dendrogram visualizations were generated using the dendextend package72. PCA 
and biplots were computed on log-transformed, scaled and centered data, using the 
PCA implementation in the prcomp function in the stats package, and functions 
available in the factoextra (v.1.0.5) package73.

Statistics. Statistical analyses were run in R and scikit-bio. For Fig. 1d, we run 
Pearson correlation tests (donor aa: n = 20, t = 0.68, df = 18, r = 0.16, P = 0.51; donor 
am: n = 18, t = 0.79, df = 16, r = 0.19, P = 0.44; donor bq: n = 11, t = −0.49, df = 9,  
r = −0.16, P = 0.64; donor cx: n = 13, t = -1.59, df = 11, r = −0.43, P = 0.14). For  
Fig. 1e, we run a linear mixed-effects model using the lmer function in the lmerTest R  
package (CGM medium: F = 8.3006, df = 60, P < 2.2 × 10−16; Mmm + Ab4 media: 
F = 15.039, df = 48, P < 2.2 × 10−16). Individuals were considered as the fixed effect, 
and genus counts as the random effect. For the PERMANOVA test run on 16S 
data (Extended Data Fig. 4a), 10,000 permutations were run (pseudo F = 38.2454, 
P < 0.0001). For the PERMANOVA test on metabolite data (Fig. 6a and Extended 
Data Fig. 7), 10,000 permutations were performed (pseudo F = 2.40656, 
P < 0.0001). Pearson correlation tests were also run on species abundances 
(Extended Data Fig. 4b; single abundances: red dots, n = 193,500, df = 193,498, 
r = 0.46, P = 0; median abundances: black dots, n = 18,206, df = 18,204, r = 0.5, 
P = 0) and function abundances (Extended Data Fig. 5b; single abundances: red 
dots, r = 0.88, P = 0; median abundances: black dots, r = 0.94, P = 0).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data Availability
Sequencing and genomic data were deposited on the NCBI, under BioProject 
PRJNA544527.
BioSample accession numbers for raw sequencing data of isolate genomes: 
SAMN11846030-SAMN11847029; SAMN11847047-SAMN11848046; 
SAMN11848055–SAMN11849054; SAMN11849056-SAMN11849687.
BioSample accession numbers for isolate genome assemblies:

SAMN11943001–SAMN11944000; SAMN11944002-SAMN11945001; 
SAMN11945004-SAMN11946003; SAMN11946038-SAMN11946669.
BioSample accession numbers for raw 16S data:
SAMN11941243–SAMN11942242; SAMN11942243–SAMN11942410.
BioSample accession numbers for metagenomic data:
SAMN11950000–SAMN11950562.
The processed metabolomics data is available at the NIH Common Fund’s 
Metabolomics Data Repository and Coordinating Center (supported by NIH 
grant, U01-DK097430) website, the Metabolomics Workbench, http://www.
metabolomicsworkbench.org, where it has been assigned Project ID PR000804.
Scripts and command lines used to analyze the sequencing and genomic data are 
available at https://github.com/almlab/BIO-ML.
The library of isolates is maintained and stored at the Broad Institute and strains 
will be made available for purchase upon request by researchers through a Broad 
Institute online platform: https://www.broadinstitute.org/bio-ml
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Extended Data Fig. 1 | Description of the BIO-ML. a, 16S phylogenetic tree of the 7,758 isolates in the BIO-ML. Lineages are colored by phylum. b, 
Depiction of the distribution of 1,347 isolates across 24 bacterial species (y axis) over time (x axis) that were whole-genome sequenced. c, Depiction of 
the distribution of 1,168 samples across individuals (y axis) and over time (x axis) that were processed for 16S amplicon sequencing. d, Depiction of the 
distribution of 563 samples across individuals and over time that were processed for shotgun metagenomic sequencing. e, Depiction of the distribution of 
179 samples across individuals and over time that were processed for metabolomic study.
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Extended Data Fig. 2 | Taxonomic coverage and composition of the BIO-ML of isolates and genomes. a, Abundance-weighted taxonomic coverage of 
the library of bacterial isolates (7,758 isolates) (y axis), compared to the diversity observed through culture-independent 16S amplicon sequencing (x 
axis). Eleven donors were used to build the library of isolates. The phylogenetic diversity of isolates was measured with 16S sanger sequencing, and this 
was compared to the total diversity observed in the 16S sequence data obtained from 1,168 samples from 90 individual donors of the BIO-ML. Taxonomic 
coverage was evaluated using different 16S OTU clustering thresholds, from 90% to 100% (ASV) similarity. b, Phylogenomic tree of the 3,632 genomes of 
the BIO-ML. Branches are colored by phylum.
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Extended Data Fig. 3 | The library of genomes contain multiple species within the Faecalibacterium and Akkermansia genera. Phylogenetic trees of 
Faecalibacterium (a) and Akkermansia (b) genomes were reconstructed using the concatenate alignment of ribosomal proteins (see Methods). We used 
RAxML to reconstruct the tree, using the PROTGAMMALGF substitution model. Pairwise Mash distances are represented on the right of each tree. 
Within each major clade, pairwise Mash distances were lower than 0.05, the threshold used to define species taxonomic units. Between clades, pairwise 
distances were higher than 0.05. Genomes in the F. prausnitzii and A. muciniphila clades have Mash distances with corresponding NCBI reference genomes 
that were lower than 0.05. Two different Akkermansia species are present in our genome library. At least two different Faecalibacterium species are present 
in the genome library.

Nature Medicine | www.nature.com/naturemedicine

http://www.nature.com/naturemedicine


ResourceNature Medicine

Extended Data Fig. 4 | Stability and conservation of microbiome species over time within and across people. a, Non-metric multidimensional scaling 
(NMDS) plot showing 16S community structure (Bray–Curtis distances) across long-term time series from ten stool donors. Samples are colored by 
donors (right). Donors maintain unique microbial signatures over many months to years (ANOSIM, P < 0.0001). b, The black points show the median 
abundance comparisons, and the red points show the results for a single, randomly drawn sample. Species abundances are conserved across donor pairs. 
The spread in the red points is larger than for the black points, indicating the median abundances show a tighter correlation across donors (black points 
Pearson’s R2 = 0.25; red points Pearson’s R2 = 0.19).
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Extended Data Fig. 5 | Stability and conservation of microbiome functions over time within and across people. a, NMDS plot showing functional 
structure (Bray–Curtis distances) across long-term time series from four stool donors. Donors maintain unique functional signatures over many months-
to-years. b, COG abundances are conserved across donor pairs. The black points show the median abundance comparisons, and the red points show the 
results for a single, randomly drawn sample. The spread in the red points is larger than that for the black points, indicating the median abundances show a 
tighter correlation across donors (black points Pearson’s R2 = 0.88; red points Pearson’s R2 = 0.77).
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Extended Data Fig. 6 | Averaging taxa abundances across time points improves the identification of species–species correlations. a, Correlation 
matrix of log median ASV relative abundances across ten donors with long, dense time series (that is cross-sectional correlations) filtered to only look 
at abundant SVs with average frequencies of ≥0.01 across the dataset. b, Distribution of correlation coefficients from panel a. Dashed lines show the 
significance threshold (P < 0.05). Correlations beyond this threshold were used to infer a cross-sectional correlation network from the full dataset. c, The 
fraction of edges from the cross-sectional correlation network inferred from the full dataset that are captured by random subsampling of donor time series. 
Choosing a single sample from each donor only captures ~40% of ‘true’ network edges (number of iterations = 10).
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Extended Data Fig. 7 | Metabolomics data capture crossdonor variation as well as within-donor variation through time. a, PC scores plot of all 179 
samples for which metabolomic data were generated. Samples colored in gray correspond to subjects for which metabolomics data had been generated 
for less than six time points. Arrows connecting samples reflect the chronological order in which samples were collected. b, Dendrogram for donors for 
which metabolomics data had been generated for more than six time points. Metabolomes are colored by subject, as in a. The first two letters indicate the 
donor ID.
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Extended Data Fig. 8 | Bacterial taxa–metabolites correlation network reveals strong functional associations in the human gut. Significant correlations 
between bacterial taxa and metabolite abundances (|Spearman’s rho| > 0.7, P < 0.01) suggest a link between eating meat and bacterial community 
composition. Alistipes and Subdoligranulum are strongly associated with the bile acid taurocholate and its derivatives. Subdoligranulum is also associated 
with carnitine, which has been linked to eating meat. Other taxa are associated with acids and lipids common to the gut environment.
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Dating methods If new dates are provided, describe how they were obtained (e.g. collection, storage, sample pretreatment and measurement), 
where they were obtained (i.e. lab name), the calibration program and the protocol for quality assurance OR state that no new 
dates are provided.

Tick this box to confirm that the raw and calibrated dates are available in the paper or in Supplementary Information.

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals For laboratory animals, report species, strain, sex and age OR state that the study did not involve laboratory animals.

Wild animals Provide details on animals observed in or captured in the field; report species, sex and age where possible. Describe how animals 
were caught and transported and what happened to captive animals after the study (if killed, explain why and describe method; if 
released, say where and when) OR state that the study did not involve wild animals.

Field-collected samples For laboratory work with field-collected samples, describe all relevant parameters such as housing, maintenance, temperature, 
photoperiod and end-of-experiment protocol OR state that the study did not involve samples collected from the field.

Ethics oversight Identify the organization(s) that approved or provided guidance on the study protocol, OR state that no ethical approval or 
guidance was required and explain why not.

Note that full information on the approval of the study protocol must also be provided in the manuscript.

Human research participants
Policy information about studies involving human research participants

Population characteristics Individuals live in the Boston area, and are Fecal Microbiota Transplant donors who donated samples to OpenBiome. Metadata 
on these individuals as provided by OpenBiome are available in Supplementary Table 1.

Recruitment Participants were originally recruited by OpenBiome. Participants are healthy individuals, who were recruited following a strict 
health and lifestyle survey to be enrolled in the FMT program. Samples with potential presence of bacterial and eukaryotic 
pathogens were originally screened out by OpenBiome.

Ethics oversight Stool samples were obtained from OpenBiome under a protocol approved by the institutional review boards at MIT and the 
Broad Institute (IRB protocol ID #1603506899)

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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All manuscripts should comply with the ICMJE guidelines for publication of clinical research and a completed CONSORT checklist must be included with all submissions.

Clinical trial registration Provide the trial registration number from ClinicalTrials.gov or an equivalent agency.

Study protocol Note where the full trial protocol can be accessed OR if not available, explain why.

Data collection Describe the settings and locales of data collection, noting the time periods of recruitment and data collection.

Outcomes Describe how you pre-defined primary and secondary outcome measures and how you assessed these measures.

ChIP-seq
Data deposition

Confirm that both raw and final processed data have been deposited in a public database such as GEO.

Confirm that you have deposited or provided access to graph files (e.g. BED files) for the called peaks.

Data access links 
May remain private before publication.

For "Initial submission" or "Revised version" documents, provide reviewer access links.  For your "Final submission" document, 
provide a link to the deposited data.

Files in database submission Provide a list of all files available in the database submission.

Genome browser session 
(e.g. UCSC)

Provide a link to an anonymized genome browser session for "Initial submission" and "Revised version" documents only, to 
enable peer review.  Write "no longer applicable" for "Final submission" documents.
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Methodology

Replicates Describe the experimental replicates, specifying number, type and replicate agreement.

Sequencing depth Describe the sequencing depth for each experiment, providing the total number of reads, uniquely mapped reads, length of 
reads and whether they were paired- or single-end.

Antibodies Describe the antibodies used for the ChIP-seq experiments; as applicable, provide supplier name, catalog number, clone 
name, and lot number.

Peak calling parameters Specify the command line program and parameters used for read mapping and peak calling, including the ChIP, control and 
index files used.

Data quality Describe the methods used to ensure data quality in full detail, including how many peaks are at FDR 5% and above 5-fold 
enrichment.

Software Describe the software used to collect and analyze the ChIP-seq data. For custom code that has been deposited into a 
community repository, provide accession details.

Flow Cytometry
Plots

Confirm that:

The axis labels state the marker and fluorochrome used (e.g. CD4-FITC).

The axis scales are clearly visible. Include numbers along axes only for bottom left plot of group (a 'group' is an analysis of identical markers).

All plots are contour plots with outliers or pseudocolor plots.

A numerical value for number of cells or percentage (with statistics) is provided.

Methodology

Sample preparation Describe the sample preparation, detailing the biological source of the cells and any tissue processing steps used.

Instrument Identify the instrument used for data collection, specifying make and model number.

Software Describe the software used to collect and analyze the flow cytometry data. For custom code that has been deposited into a 
community repository, provide accession details.

Cell population abundance Describe the abundance of the relevant cell populations within post-sort fractions, providing details on the purity of the samples 
and how it was determined.

Gating strategy Describe the gating strategy used for all relevant experiments, specifying the preliminary FSC/SSC gates of the starting cell 
population, indicating where boundaries between "positive" and "negative" staining cell populations are defined.

Tick this box to confirm that a figure exemplifying the gating strategy is provided in the Supplementary Information.

Magnetic resonance imaging
Experimental design

Design type Indicate task or resting state; event-related or block design.

Design specifications Specify the number of blocks, trials or experimental units per session and/or subject, and specify the length of each trial 
or block (if trials are blocked) and interval between trials.

Behavioral performance measures State number and/or type of variables recorded (e.g. correct button press, response time) and what statistics were used 
to establish that the subjects were performing the task as expected (e.g. mean, range, and/or standard deviation across 
subjects).
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Acquisition

Imaging type(s) Specify: functional, structural, diffusion, perfusion.

Field strength Specify in Tesla

Sequence & imaging parameters Specify the pulse sequence type (gradient echo, spin echo, etc.), imaging type (EPI, spiral, etc.), field of view, matrix size, 
slice thickness, orientation and TE/TR/flip angle.

Area of acquisition State whether a whole brain scan was used OR define the area of acquisition, describing how the region was determined.

Diffusion MRI Used Not used

Preprocessing

Preprocessing software Provide detail on software version and revision number and on specific parameters (model/functions, brain extraction, 
segmentation, smoothing kernel size, etc.).

Normalization If data were normalized/standardized, describe the approach(es): specify linear or non-linear and define image types 
used for transformation OR indicate that data were not normalized and explain rationale for lack of normalization.

Normalization template Describe the template used for normalization/transformation, specifying subject space or group standardized space (e.g. 
original Talairach, MNI305, ICBM152) OR indicate that the data were not normalized.

Noise and artifact removal Describe your procedure(s) for artifact and structured noise removal, specifying motion parameters, tissue signals and 
physiological signals (heart rate, respiration).

Volume censoring Define your software and/or method and criteria for volume censoring, and state the extent of such censoring.

Statistical modeling & inference

Model type and settings Specify type (mass univariate, multivariate, RSA, predictive, etc.) and describe essential details of the model at the first 
and second levels (e.g. fixed, random or mixed effects; drift or auto-correlation).

Effect(s) tested Define precise effect in terms of the task or stimulus conditions instead of psychological concepts and indicate whether 
ANOVA or factorial designs were used.

Specify type of analysis: Whole brain ROI-based Both

Statistic type for inference
(See Eklund et al. 2016)

Specify voxel-wise or cluster-wise and report all relevant parameters for cluster-wise methods.

Correction Describe the type of correction and how it is obtained for multiple comparisons (e.g. FWE, FDR, permutation or Monte 
Carlo).

Models & analysis

n/a Involved in the study
Functional and/or effective connectivity

Graph analysis

Multivariate modeling or predictive analysis

Functional and/or effective connectivity Report the measures of dependence used and the model details (e.g. Pearson correlation, partial 
correlation, mutual information).

Graph analysis Report the dependent variable and connectivity measure, specifying weighted graph or binarized graph, 
subject- or group-level, and the global and/or node summaries used (e.g. clustering coefficient, efficiency, 
etc.).

Multivariate modeling and predictive analysis Specify independent variables, features extraction and dimension reduction, model, training and evaluation 
metrics.
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