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Changes in the gut microbiota have been associated with two of the most common gastrointestinal diseases, in-
flammatory bowel disease (IBD) and irritable bowel syndrome (IBS). Here, we performed a case-control analysis 
using shotgun metagenomic sequencing of stool samples from 1792 individuals with IBD and IBS compared with 
control individuals in the general population. Despite substantial overlap between the gut microbiome of pa-
tients with IBD and IBS compared with control individuals, we were able to use gut microbiota composition differ-
ences to distinguish patients with IBD from those with IBS. By combining species-level profiles and strain-level 
profiles with bacterial growth rates, metabolic functions, antibiotic resistance, and virulence factor analyses, we 
identified key bacterial species that may be involved in two common gastrointestinal diseases.

INTRODUCTION
Inflammatory bowel disease (IBD) and irritable bowel syndrome 
(IBS) are two of the most common gastrointestinal (GI) disorders, 
affecting 0.3 to 0.5% and 7 to 21% of the worldwide population, re-
spectively. Both disorders impose a large burden on patients, impair-
ing their quality of life as well as their ability to work and function 
socially (1, 2). In addition, the economic burden of these disorders 
in the United States and Europe exceeds 10 billion dollars a year in 
direct health care costs and indirect economic costs (2, 3).

IBD, comprising Crohn’s disease (CD) and ulcerative colitis (UC), 
is a chronic intermittent disorder characterized by intestinal inflam-
mation. IBS is defined as a combination of GI symptoms, including 
abdominal pain, constipation, or diarrhea (4). Patients with IBD and 
IBS may have similar symptoms, but whereas the pathogenesis of 
IBD consists of mucosal inflammation, the pathogenesis of IBS 
remains poorly understood, and there is no causative anatomical or 
biochemical abnormality that can be used to diagnose IBS (2).

The gut microbiota is presumed to play a large role in both IBD 
and IBS (5, 6). However, thus far, large-scale gut microbiome se-
quencing associated with IBD and IBS compared with healthy con-

trols has only been accomplished using low-resolution 16S ribosomal 
RNA (rRNA) marker gene sequencing (7–9). Functional studies have 
so far only focused on single bacterial species or strains in the gut. 
Here, we aimed to bridge the gap between previous 16S rRNA se-
quencing studies and functional studies by identifying complete gut 
microbiome profiles using high-resolution shotgun metagenomic 
sequencing and looking at both the species level and strain level in 
stool samples from individuals with IBS or IBD. We also aimed to 
identify potential targets for microbiome-targeted therapy by analyz-
ing microbial pathways, antibiotic resistance, and virulence factors 
in the gut microbiota of patients with IBS and IBD compared with 
control individuals in the general population.

We undertook high-resolution shotgun metagenomic sequenc-
ing of stool samples from three well-phenotyped Dutch cohorts: 
LifeLines DEEP, a general population cohort, the University Medical 
Center of Groningen IBD (UMCG IBD) cohort, and the Maastricht 
IBS (MIBS) case-control cohort. In total, we analyzed stool samples 
from 1792 participants: 355 patients with IBD, 412 patients with IBS, 
and 1025 controls (table S1).

RESULTS
Species-level and strain-level identification shows microbiome 
signatures in stool samples from patients with IBD or IBS
Species-level and strain-level identification of the gut microbiome 
was necessary to identify potential disease-associated microbes that 
could be cultured and then investigated in functional studies. First, 
we assessed the overall composition (Fig. 1) and the microbial alpha 
diversity (fig. S1) of the gut microbiome of stool samples from con-
trol individuals and those with IBS or IBD. Next, we performed asso-
ciation analyses of the relative taxonomy abundance for each group 
of individuals (table S2), correcting for 26 previously identified con-
founding factors (table S3) (10). In total, 219 of the 477 identified 
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nonredundant taxa were associated with patients with CD (table S4), 
102 taxa with patients with UC (table S5), and 66 taxa with patients 
with IBS who had been diagnosed by a gastroenterologist (IBS-GE; 
table S6) [significance threshold for all associations, false discovery 
rate (FDR) < 0.01]. Patients with CD or UC showed similar dysbiotic 
gut microbiome profiles. Of the 102 UC-associated bacterial taxa, 
87 were also found to be associated with the gut microbiome pro-
files of patients with CD. However, we also identified 15 UC-specific 
associations, including the species Bacteroides uniformis (FDR = 8.31 × 
10−5; table S5) and Bifidobacterium bifidum (FDR = 6.78 × 10−7; table 
S5). Compared with controls, patients with IBD and patients with 
IBS-GE showed substantial overlap in the increase and decrease in 
the relative abundance of bacterial species in their gut microbiome. 
In total, 24 taxa were associated with both IBD and IBS (table S7 and 
fig. S2). These associations included a decrease in several butyrate-
producing bacteria, including Faecalibacterium prausnitzii, a known 
beneficial bacterium with anti-inflammatory properties that was lower 
in individuals with CD or IBS-GE (FDR = 1.85 × 10−34 or 7.30 × 10−6, 
respectively; table S9). No significant differences were observed in 
patients with UC compared with controls (FDR = 0.93; table S9), 
although a trend toward lower F. prausnitzii was observed in pa-
tients with UC with active disease, defined as Simple Clinical Colitis 
Activity Index values above 2.5 (P = 0.05, FDR = 0.39; table S9). In 
addition to the 24 overlapping associations, we also found disease-
specific associations. The abundance of Bacteroides species, for exam-
ple, was only increased in patients with IBD but not in those with 

IBS (table S9). Bacteroides are typically symbionts but can also be 
opportunistic pathogens (11). In this study, observed increases in 
patients with CD or UC included Bacteroides fragilis (FDRCD = 1.33 × 
10−5, FDRUC = 0.0039; table S9), previously linked to impaired bac-
terial tolerance handling by CD-associated genetic variation in the 
genes NOD2 and ATG16L1, and Bacteroides vulgatus (FDRCD = 1.00 × 
10−9; table S4), linked to pathogenesis of CD and NOD2 host genetic 
variants (12, 13). An increase in species of the Enterobacteriaceae 
family was observed only in patients with CD (table S9), including 
increases in Escherichia/Shigella species, which are known to in-
vade the gut mucosal epithelium, cause bloody diarrhea, and ulcer-
ation of the colon (14). Moreover, the abundance of species such as 
Bifidobacterium longum that are capable of resisting enteric infec-
tions by Shigella species was lower in patients with CD (FDRCD = 
6.13 × 10−6; table S4) (15). IBS-GE was associated with an increase 
in several Streptococcus species (table S6). In contrast, there were no 
significant alterations in the gut microbiome associated with an IBS 
diagnosis based on questionnaire responses (IBS-POP; table S8). 
However, when a looser significance threshold was applied, the de-
creased abundance of F. prausnitzii and the increase in Streptococcus 
species could be replicated (FDR < 0.1; table S8). Figure 2 gives an 
overview of the gut microbiome associations identified in CD, UC, 
and IBS-GE, depicting the numbers of increased and decreased 
species per family. Detailed results of the case-control taxonomy 
analyses including all disease cohorts versus control data are shown 
in table S9.

Fig. 1. Principal coordinate analysis of Bray-Curtis dissimilarities showing the gut microbiome spectrum of 1792 human fecal metagenomes. Bray-Curtis dissim-
ilarities were calculated from taxonomic end points. End points were defined as the lowest nonredundant taxonomic level. The first principal coordinate is represented 
by the x axis, and the second principal coordinate is represented by the y axis. The relative abundance of the three most abundant bacterial phyla—Actinobacteria 
(A), Bacteroidetes (B), and Firmicutes (C)—underlies the first two principal coordinates (PCos). The metagenomes of patients with IBS (D) or IBD (E) differed from those of 
the population controls (IBD versus control PCo1, P = 1.20 × 10−5; PCo2, P = 2.20 × 10−16; IBS versus control PCo1, P = 8.05 × 10−6; PCo2 P = 6.72 × 10−7; two-sided unpaired 
Wilcoxon rank-sum test) and from each other (PCo1, P = 2.22 × 10−7; PCo2, P = 5.06 × 10−12). On average, as schematically depicted (F), controls had more Actinobacteria 
in their stool than did patients with IBD or IBS. Patients with IBS had more Firmicutes and less Bacteroidetes than did controls. In contrast, patients with IBD had less 
Firmicutes and more Bacteroidetes than did controls.
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We next asked how disease state affected strain-level diversity. 
We hypothesized that if conditions favored the growth of pathogenic 
bacteria, then the strain diversity of those organisms may increase 
compared with diversity values in healthy individuals. Conversely, 
for beneficial microbes, if these organisms were more likely to be 
lost from the gut or to suffer from generally reduced population 
sizes, then population bottlenecks may reduce diversity. We inves-

tigated bacterial strain diversity in stool samples from patients with 
IBD or IBS by assessing the genetic heterozygosity in a set of marker 
genes. We consistently found increased strain diversity in likely 
pathogenic species and reduced strain diversity in beneficial species 
in stool samples from patients with IBD or IBS compared with con-
trols. In total, we found that strain diversity of 21, 15, or 1 bacterial 
species was altered in patients with CD, UC, and IBS-GE, respectively 

Fig. 2. Gut microbiota species associated with CD, UC, and IBS-GE compared with controls. Statistically signifi-
cant results (FDR < 0.01) of the case-control multivariate model analyses are depicted. Per microbial family, the 
number of species that were increased (orange) or decreased (blue) is shown including 134 species in CD belonging 
to 24 families, 58 species in UC belonging to 21 families, and 37 species in IBS-GE belonging to 15 families.
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(FDR < 0.01; table S10). For example, in patients with CD, UC, and 
IBS-GE, the strain diversity of the beneficial bacterium F. prausnitzii 
(FDRCD = 1.34 × 10−13, FDRUC = 1.87 × 10−7, FDRIBS-GE = 3.56 × 10−5, 
and FDRIBS-POP = 0.03) was decreased (table S10). In stool samples 
from patients with CD or UC, the strain abundance of Roseburia 
intestinalis decreased (FDRCD = 3.30 × 10−13, FDRUC = 2.56 × 10−9; 
table S10). Roseburia species are acetate-to-butyrate converters that 
reside in the intestinal mucus layer, where they have anti-inflammatory 
effects. For some bacteria, e.g., F. prausnitzii, both the abundance 
and the strain diversity were decreased in IBD or IBS-GE (tables S9 
and S10). However, for other bacteria, e.g., R. intestinalis, the abun-
dance was not altered in the disease, whereas the strain diversity did 
decrease (Fig. 3 and tables S9 and S10).

Different bacterial growth dynamics are observed in stool 
samples from patients with IBD or IBS
Cross-sectional studies provide an overview of the relative abundance 
of bacterial taxa at a single time point and therefore do not capture 
the complex dynamics of the microbial ecosystems in the gut of 
patients with IBD or IBS. Recently, it has been shown that bacterial 
growth dynamics could be inferred from a single metagenomic 
sample by studying the pattern of sequencing read coverage [peak-to-
trough ratio (PTR)] across the gut bacterial genomes (16). The as-
sessment of disease-associated growth rate differences could help to 
identify actively growing bacteria and, hence, could help to prioritize 
disease-associated taxonomy results. In our dataset, bacterial growth 
rates could be determined for 40 species and were altered in four 
species in patients with CD, five species in patients with UC, and one 
species in patients with IBS-GE, compared with control individuals 
(FDR < 0.01) (table S11). In patients with CD, the bacterial growth 
rates of B. fragilis (FDRCD = 0.005) and Escherichia coli (FDRCD = 
0.0004) were increased compared with controls (table S11).

Gut microbiota composition can be used to distinguish  
IBD from IBS-GE
Given the observed differences in gut microbiome between patients 
with IBD and IBS-GE, we investigated the use of microbial taxonomy 
markers as potential predictors of disease. Because of the substantial 
overlap in clinical presentation, it can be difficult for a general prac-
titioner or gastroenterologist to distinguish between IBD and IBS, 
and colonoscopies are performed in a large number of patients to 
reach the correct diagnosis. We applied a machine learning tech-
nique based on generalized linear models with penalized maximum 
likelihoods to our gut microbiome data. To overcome the lack of an 
independent replication cohort, the prediction accuracy was estimated 
by performing a 10-fold cross-validation, dividing the disease cohort 
into a 90% training set and a 10% discovery set. The microbial com-
position showed a better prediction accuracy [area under the curve 
(AUC)mean = 0.91 (0.81 to 0.99)] than the currently used fecal in-
flammation biomarker calprotectin [AUCmean = 0.80 (0.71 to 0.88); 
P = 0.002, two-sided paired Wilcoxon rank-sum test; table S12]. Only 
minor differences in the ability to discriminate between IBD and IBS 
were observed when using either the microbial taxonomy data or the 
microbial pathways or both datasets combined (table S12). Next, a 
selection of the top 20 taxonomies (table S13) with the largest effect 
size in the prediction model was tested, resulting in an AUCmean of 0.90. 
The use of the top five taxonomies also led to a similar prediction accu-
racy as fecal calprotectin measurements (milligrams per kilogram; 
top five taxa, AUCmean  =  0.81 and AUCcalprotectin  =  0.80; tables 

S12 and S13). When we combined the fecal calprotectin measure-
ments with the top 20 selected taxonomies, the model reached the 
highest prediction accuracy (AUCmean = 0.93; Fig. 4 and table S13).

Metagenomic analysis reveals functional changes in the gut 
microbiota in stool samples from patients with IBD and IBS
Metagenomic sequencing enabled the determination of the func-
tional capacity of the gut microbiome from patients with CD, UC, 
or IBS-GE. In stool samples from patients with CD, UC, or IBS-GE, a 
number of microbial pathways were altered compared with those of 
controls (175, 61, or 38 altered pathways, respectively; FDR < 0.01; 
tables S14 and S15). We identified both overlap and differences in 
microbial functions that included the synthesis of amino acids, 
neurotransmitters, and vitamins, as well as the regulation of mineral 
absorption and the degradation of complex carbohydrates (table 
S15). The fermentation of pyruvate to butanoate, a butyrate precursor, 
was decreased in stool samples from patients with IBD and IBS-GE 
(CENTFERM_PWY, FDRIBD = 6.10 × 10−10, FDRIBS-GE = 6.57 × 10−5; 
table S15). In patients with CD, the decreased fermentation pathways, 
the higher sugar degradation, and the increased biosynthesis of quinones 
formed a microbial environment characteristic of inflammation (table 
S15). In patients with UC, pathways producing butyrate and acetate were 
decreased (e.g., PWY_5676, FDRUC = 0.0029), and pathways produc-
ing lactate were increased (ANAEROFRUCAT_PWY, FDRUC = 0.0004; 
P122_PWY, FDRUC = 0.0001; table S15). However, in patients with 
IBS-GE, the metabolic signatures were characterized by increased 
fermentation (e.g., FERMENTATION_PWY, FDRIBS-GE  =  6.24 × 
10−7) and carbohydrate degradation pathways (e.g., LACTOSE-
CAT_PWY, FDRIBS-GE = 0.0016; table S15).

We found alterations in several microbial l-arginine path-
ways, suggesting that there may be depletion of l-arginine in pa-
tients with CD. Three microbial l-arginine biosynthesis pathways 
were decreased in patients with CD (PWY_7400, FDRCD = 0.0007; 
ARGSYN_PWY, FDRCD = 0.0003; ARGSYNBSUB_PWY, FDRCD = 
1.01 × 10−9; table S15). Vitamins can act as antioxidants, one exam-
ple being vitamin B2 or riboflavin. Several flavin pathways were 
decreased in patients with CD (PWY_6167, FDRCD = 2.29 × 10−6; 
PWY_6168, FDRCD = 1.47 × 10−6; RIBOSYN2_PWY, FDRCD = 
0.0003; table S15) and UC (PWY_6167, FDRUC = 0.01; table S15).

Patients with IBD or IBS show increased abundance of 
virulence factors in their gut microbiota
Virulence factors contribute to the pathogenic potential of bacteria 
through several mechanisms, including increased adhesion of bac-
teria to the gut mucosa, immune system evasion, or suppression of 
the host immune response. We assessed the homology between our 
metagenomic reads and the protein sequences from the Virulence 
Factor Database (VFDB). Among patients with CD, UC, IBS-GE, or 
IBS-POP, the relative abundance of 262 virulence factors was in-
creased compared with controls (FDR < 0.01; table S16). In patients 
with CD, the abundance of 216 virulence factors was increased (table 
S16). Proteins belonging to different iron uptake pathways were in-
creased, including the yersiniabactins ybt (FDRybt-a = 0.002, FDRybt-s = 
3.40 × 10−7, FDRybt-t = 5.12 × 10−7, FDRybt-u = 4.20 × 10−7, and 
FDRybt-x = 2.95 × 10−7) usually found in Yersinia pestis and the 
enterobactin proteins entA-F (FDR < 6.78 × 10−5) and entS (FDR = 
2.30 × 10−8) usually found in E. coli (table S16). The abundance of 
enterobactins correlated with the relative abundance of Entero-
bacteriales (Spearman coefficient, rho = 0.8; FDR < 0.01; table S16). 
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This increase in virulence factors was also reflected in an increase in the 
enterobactin pathway in patients with CD (ENTBACSYN_PWY, FDR = 
0.006; table S15). Many pathogens have acquired efficient iron uptake 
mechanisms that give them a survival advantage in low iron environ-
ments (17–20). This was reflected in alterations in several microbial 
iron uptake pathways in patients with CD (HEME-BIOSYNTHESIS-II, 
PWY-5918, and PWY-5920, FDR < 0.01; table S15). In patients with 
UC, 35 virulence factors were increased, for example, the relative 
abundance of MU-toxin and its transport protein complex contain-
ing nagI, nagJ, and nagL were increased (FDRnagI = 3.56 × 10−5, 
FDRnagJ = 4.59 × 10−13, and FDRnagL = 9.11 × 10−9; table S16).

Changes in the microbiome composition in patients with IBD 
and IBS have an impact in the antibiotic resistance load 
Metagenomic sequencing provides the opportunity to study the re-
sistome of patients with IBD or IBS on a large scale. To see whether 
increases in antibiotic resistance were present in the gut microbiota of 
patients with IBD or IBS, we assessed the homology between metage-
nomic reads and protein sequences from the antibiotic resistance 
database, Comprehensive Antibiotic Resistance Database (CARD). 
Subsequently, to identify the microbes that potentially harbored the 
antibiotic resistance proteins, we correlated the abundance of anti-
biotic resistance genes with taxonomy abundance. In patients with 

CD, the abundance of 142 genes encoding antibiotic resistance pro-
teins was higher than that in controls. Of these antibiotic resistance 
proteins, 63 were components of efflux complexes that remove 
antibiotics from the bacteria, thereby preventing the antibiotics 
from working effectively (table S17). These efflux complexes consist 
of three proteins that span the inner membrane, the periplasm, and 
the outer membrane of bacteria. Some efflux pumps can only trans-
port one specific type of antibiotic, whereas other efflux pumps, 
called multidrug efflux pumps, can transport several types of antibi-
otics. The antibiotic resistance protein TolC, which was increased 
in patients with CD (FDR = 5.26 × 10−6; table S17), is an outer mem-
brane protein comprising several multidrug efflux pumps. TolC is 
often combined with other inner membrane and periplasmic efflux 
proteins including AcrA, AcrB, MdtA/B/C, MdtE/F, emrA/B, and 
emrK/Y. The abundance of these proteins was also increased in patients 
with CD (FDRcrA = 1.41 × 10−9, FDRAcrB = 4.60 × 10−11, FDRMdtA = 4.75 × 
10−5, FDRMdtB = 0.002, FDRMdtC = 2.28 × 10−15, FDRMdtE = 0.005, 
FDRMdtF = 0.0001, FDRemrA = 1.23 × 10−5, FDRemrB = 2.99 × 10−8, 
FDRemrK = 2.54 × 10−8, and FDRemrY = 8.83 × 10−9; table S17). The 
abundance of TolC in patients with CD correlated with taxonomy 
abundance of the genus Escherichia that was also increased (Spearman 
coefficient, rho = 0.80; FDR < 1.0 × 10−16; table S17). In patients 
with UC, the abundance of 66 genes encoding antibiotic resistance 

A

B

Fig. 3. Differences in bacterial abundance, bacterial strain diversity, and bacterial growth rates of key species in patients with IBD and IBS and controls. (A) Bar 
plots representing the heterozygosity values within bacterial species are shown; SEs are indicated. Heterozygosity is used as an estimation of the strain diversity within a 
species. Higher heterozygosity values indicate the presence of multiple strains of the same species. Each bar represents a cohort: Controls are depicted in purple, patients 
with CD in blue, patients with UC in gray, patients with IBS-GE in yellow, and patients with IBS-POP in red. Each asterisk indicates significant differences when comparing 
to controls (FDR < 0.01). (B) Heatmaps indicate significant changes in relative abundance and growth rates [peak-to-trough ratio algorithm (PTR)] of each bacterial species 
in disease cohorts compared with controls. Red boxes indicate a significant increase, and blue boxes a significant decrease (FDR < 0.01).
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proteins was higher than that in controls. One of the highest differ-
entially abundant antibiotic resistance proteins in patients with 
UC was cepA (FDR = 4.85 × 10−12; table S17). This antibiotic resis-
tance protein is a -lactamase, an enzyme mediating resistance to 
-lactam antibiotics, including the frequently prescribed antibiotics 
amoxicillin and penicillin (21). The abundance of the antibiotic resis-
tance gene cepA correlated with the abundance of the genus Bacteroides, 
which was increased in patients with UC and CD (Spearman coeffi-
cient, rho = 0.86; FDR < 1.0 × 10−16; table S17). Several genes encod-
ing for antibiotic resistance proteins were increased in patients with 
IBS, and the abundance of 32 antibiotic resistance genes was increased 
in patients with IBS-GE compared with controls. One of most in-
creased antibiotic resistance proteins in patients with IBS-GE was mecB 
(FDR = 0.0001; table S17), which is involved in resistance to methicil-
lin. This protein is usually found in species belonging to the Macrococcus 
genus, which is closely related to the Staphylococcus genus (22). In 
patients with IBS-POP, the abundance of 13 genes encoding for anti-
biotic resistance proteins was increased compared with controls, 
including PBP2x (FDR = 0.0056; table S17), a penicillin-binding 
protein. PBP2x, usually found in Streptococcus pneumoniae (23), 
was highly correlated with the taxonomy abundance of the genus 
Streptococcus (Spearman coefficient, rho = 0.91; FDR < 1.0 × 10−16; 
table S17) in our gut microbiome data. We investigated whether 
current antibiotic use correlated with the presence of antibiotic re-
sistance genes, but only a few individuals were taking antibiotics, 
and no statistically significant associations were found.

Gut microbiota changes are associated with disease-specific 
factors and disease subphenotypes
Previous studies have established that the composition of the gut 
microbiota is influenced by over 100 intrinsic and extrinsic factors 

(e.g., dietary factors, medications, disease, and anthropometric 
factors) in the general population (10, 24). However, in IBD and 
IBS, both the gut microbiota composition and various phenotypes 
(e.g., defecation frequency, medication use, and previously performed 
GI surgical interventions) may be altered. Therefore, we recalculated 
the relation between intrinsic and extrinsic factors and the overall 
microbial composition (Bray-Curtis dissimilarities), alpha diversity 
(Shannon index), and gene richness (tables S18 to S21 and Fig. 5). 
These results, together with the correlations of the intrinsic and ex-
trinsic factors (tables S22 to S25), resulted in the lists of factors that 
were included in subsequent association analyses (table S26). Uni-
variate and multivariate within-cases association analyses were per-
formed on taxonomy (tables S27 to S34) and microbial pathways 
(tables S35 to S43). In CD, only 1% of the microbial variance could 
be explained by inflammatory disease activity (FDR = 0.077; table 
S18). In contrast, ileocecal resection in patients with CD resulting in 
the removal of the ileocecal valve was the factor that explained 5% 
of the variance (FDR = 0.00159; table S18). The absence of the ileocecal 
valve was associated with a decrease in microbial and gene richness, 
specifically with decreases in the beneficial bacterium F. prausnitzii 
(FDRCD-ileal = 8.01 × 10−10; table S27) and the Ruminococcaceae 
family (FDRCD-ileal = 4.63 × 10−10; table S27) and an increase in 
Fusobacterium (FDRCD-ileal = 0.002; table S27). This suggested that 
removing the ileocecal valve had negative consequences for the gut 
microbiota of patients with IBD. Vitamin D supplementation in 
patients with CD was associated with a decreased abundance of 
Akkermansia muciniphila (FDRCD = 0.19; table S27), a mucin-
degrading bacterium that grows in a low-fiber environment (25).

DISCUSSION
The use of shotgun metagenomic sequencing data allowed us to ex-
plore the complexity of the gut microbial ecosystem with high reso-
lution. We were also able to describe some important characteristics of 
the microbial community, including the strain diversity, the growth 
dynamics, and the presence of genes involved in bacterial virulence 
and in antibiotic resistance mechanisms that can provide an adapt
ive advantage to opportunistic and pathogenic microbes. We also 
explored the changes in microbial pathway profiles, providing rele-
vant information on the functional consequences of microbiome 
dysbiosis. The integration of these datasets allowed us to pinpoint 
key species as targets for functional studies in IBD and IBS (Fig. 3) 
and to connect knowledge of the etiology and pathogenesis of IBD 
and IBS with the gut microbiome to provide potential new targets 
for treatment.

Before our results can be translated into clinical practice, much 
more additional evidence is required to overcome the limitations of 
our study. The relevance of the microbial pathways described in this 
study needs to be supported by metatranscriptomics and metabolo-
mics data, as well as functional experiments. We have described the 
resistome and virulence factor abundance in the gut microbiota of 
patients with IBD or IBS. However, to identify the relevant mecha-
nisms associated with GI disease, experiments based on culturomics 
and whole-genome sequencing of specific bacterial strains are needed. 
In addition, replication in independent cohorts, including in patients 
with other GI disorders or prediagnostic groups, will be needed to 
validate the sensitivity and specificity of our prediction model. In 
this study, we made use of two cohorts consisting of patients already 
diagnosed with IBD or IBS. Therefore, our prediction model does 

Fig. 4. Prediction model to distinguish IBD from IBS. Shown is a receiver operating 
characteristic curve (ROC) describing the prediction accuracy of three different 
models calculated using a 10-fold cross-validation. The black line represents the 
prediction accuracy when using age, sex, and body mass index of each participant 
to discriminate between patients with IBD or IBS-GE. When adding fecal calpro-
tectin measurements to the model (blue line), the AUC achieved a mean value of 
0.80. Adding the relative abundance of the top 20 most discriminating bacterial 
taxa (red line) improved the classification accuracy power (AUC = 0.90).
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not reflect the clinical situation where treatment-naïve patients or 
patients with other comorbidities could present with different micro-
biome characteristics. Moreover, variations in laboratory protocols, 
sequencing techniques, or geographical origin of samples may also 

influence the accuracy of our model. Cross-sectional cohorts of pa-
tients with established disease allowed us to find the influence of 
many different subphenotypes; however, these cohorts can only 
provide limited insight into the mechanisms underlying the onset 

A

B

C

D

Fig. 5. Associated phenotypes for microbial richness and gut microbiota composition. Shown are associated phenotypes for microbial richness and gut microbiota 
composition in four disease cohorts: (A) CD, (B) UC, (C) IBS-GE, (D) IBS-POP. In the bar plots, the x axis represents the explained variance of each phenotype on gut mi-
crobiota composition expressed as Bray-Curtis (BC) dissimilarities. Black bars indicate statistical significance (FDR < 0.1). The heatmap indicates significant positive 
correlations (red) or negative correlations (blue) between phenotypes and microbial richness (Shannon index) and bacterial gene richness (the number of different mi-
crobial gene families per sample). PPI, proton pump inhibitors; SSCAI, Simple Clinical Colitis Activity Index; SSRI, Selective Serotonin Reuptake Inhibitor.
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of IBD or IBS. Longitudinal studies will help to determine the dy-
namics of the disease, as well as distinguishing the microbial fea-
tures that are causal from those that are consequences of disease. 
Another limitation of this study was the relatively low numbers of 
well-defined patients with IBS. Therefore, we could not perform an 
in-depth characterization of the IBS subphenotypes such as patients 
with constipation or diarrhea.

The availability of many phenotypic characteristics, e.g., medi-
cation use or lifestyle, for each participant in our study enabled us 
to perform a strict case-control analysis while taking important con-
founding factors into account. The use of well-characterized cohorts 
should become a common practice when studying the microbiome 
in a disease context. The use of drugs such as proton pump inhibi-
tors or laxatives, which are more often used by patients with IBD or 
IBS, has a large impact on the gut microbiota composition. Consider-
ing these effects, correction for these medications is essential for 
identifying disease-associated microbial features and avoiding false-
positive associations due to changes in GI acidity or bowel mobility. 
In addition, our study provides new information about the effects of 
lifestyle and medication on microbiome composition and function 
in patients with IBD or IBS and finds associations between microbial 
signatures and the subphenotypes of IBD and IBS. Whereas disease 
activity explains a large proportion of the variation in microbial 
composition in patients with UC, disease location and gut resections 
have a large impact on the gut ecosystem in patients with CD. This 
fact highlights the importance of collecting and considering disease-
specific phenotypes when analyzing the microbial composition of 
patients with IBD or IBS.

Dysbiosis of the gut microbiota was observed in patients with 
IBD. The two main subtypes of IBD (CD and UC) showed substan-
tial overlap in their gut microbial signatures. These shared signa-
tures could be an indicator of gut inflammation. However, when 
compared with controls, the microbial changes in patients with CD 
were larger than those in patients with UC. This is concordant with 
previous studies that identified inflammation of the ileum as one of 
the main drivers of differential microbiome signatures between CD 
and UC (7, 26). Furthermore, in patients with CD, the removal of 
the ileocecal valve was found to be associated with a reduction in 
microbiome richness (Fig. 5) and a decrease in pathways involved 
in the degradation of primary bile acids (table S35). These findings 
are consistent with clinical observations of bile acid malabsorption 
in patients with IBD (27). In addition, absence of the ileocecal valve 
was related to a decrease in the relative abundance of F. prausnitzii. 
F. prausnitzii is an anaerobic bacterium that is sensitive to small 
changes in bile salt concentrations (28). Oxidative stress produced 
by inflammation in the gut, together with a decrease in antioxidant 
biosynthesis pathways and changes in bile acid metabolism, could 
explain the observed reduction in F. prausnitzii solely in the CD sub-
type of IBD.

A moderate decrease in F. prausnitzii accompanied by an increase 
in the abundance of Streptococcus species was the main characteristic 
of the gut microbiota of participants with IBS symptoms based on 
ROME-III criteria; this was consistent with similar changes observed 
in the clinical IBS cohort. Larger changes in gut microbiota compo-
sition were observed in the IBS cohort defined by a gastroenterologist, 
including a decrease in butyrate-producing bacteria and an increase 
in taxa belonging to the Actinomyces, Streptococcus, and Blautia 
genera. Although no significant differences were observed between 
the gut microbiotas of IBS subtypes, when comparing patients with 

IBS with diarrhea to controls, an increase in the relative abundance 
of Eggerthella lenta and a decrease in the sulfate-reducing bacterial 
family Desulfovibrionaceae were observed.

Although the gut microbiota composition has been described as 
stable across individuals in different population cohorts even in the 
presence of high interindividual taxonomic variation (10), a large 
number of microbial pathways were shown to be disrupted in pa-
tients with IBD or IBS. Our comprehensive analyses of microbial 
pathways provide relevant information that can help in the design 
of better therapeutics aimed at restoring the microbial ecosystem in 
patients with IBD or IBS. Thus far, the results of prebiotic, probiotic, 
dietary, and fecal transplantation interventions meant to invoke 
beneficial changes in the gut microbiome in IBD and IBS have been 
disappointing. However, focusing on interventions that change the 
functions of the gut microbiota could be more successful. For example, 
combining antioxidant vitamin supplementation with fecal micro-
biome transplantation or F. prausnitzii probiotics could protect an-
aerobic bacteria from oxidative stress during intestinal inflammation; 
providing l-arginine supplements to patients with CD could enhance 
wound healing in the damaged gut.

Our study also found more evidence for mechanisms implicated 
in the maintenance of gut health. For example, in patients with IBD, 
we found a reduction in the methanogenesis pathway (table S15). 
This pathway is strongly correlated with the presence of Methano-
bacteria, of which Methanobrevibacter smithii is the most abundant 
species (29). Another example is our observed reduction in path-
ways that produce hydrogen sulfide in patients with IBD (e.g., 
SO4ASSIM-PWY and PWY-821; table S15). Although the effect of 
changes in concentrations of hydrogen sulfide is still being debated, 
several studies have shown that this molecule could have antioxidant 
and immune-regulatory properties (30).

Virulence factors are key features for the selective advantage of 
potentially pathogenic bacteria over common members of the healthy 
gut microbiota. Mechanisms that alter the mucosal composition or 
increase bacterial adhesion, secretion of toxins, or competition with 
the host for resources could contribute to IBD and IBS pathogenesis. 
So far, studies of virulence mechanisms in the context of GI diseases 
have focused on specific groups of bacteria such as adherent-invasive 
E. coli (31) and microbial proteases (32). By exploring the pathogenic 
potential of the gut microbiota community in IBD and IBS, we were 
able to identify other potential targets such as Mu-toxin in patients 
with UC. Although these findings still need to be validated by tar-
geted approaches or transcriptomic analyses, the virulence factor 
associations we present provide a better understanding of the patho-
genesis of both disorders.

The changes we identified in gut microbiota composition and func-
tional potential in patients with IBD and IBS could lead to new tools 
that assist diagnosis in clinical practice. Sophisticated models that 
include a combination of different blood or stool biomarkers and that 
have been validated in a replication cohort are required to design new 
diagnostic tests. Our results suggest that in the future the use of probes 
directed at key bacterial species could complement fecal calprotectin 
measurements in distinguishing the diagnosis of IBS and IBD.

MATERIALS AND METHODS
Study design
The aims of this cross-sectional study were to describe the features 
of the gut microbiota of patients with IBD or IBS and to compare 
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them to those of control individuals from the general population. We 
analyzed fecal metagenomes of 1792 individuals. We combined species-
level profiles and strain-level profiles with bacterial growth rates, meta-
bolic function, antibiotic resistance, and virulence factor analyses to 
identify key bacterial species that may be involved in GI diseases.

The following three cohorts from The Netherlands were used: 
LifeLines DEEP, UMCG IBD cohort, and MIBS cohort. IBD was 
diagnosed by a gastroenterologist based on accepted radiological, 
endoscopic, and histopathological evaluation. Of the 355 patients 
with IBD, 208 patients were diagnosed with CD, 126 patients with 
UC, and 21 patients with IBD-unclassified/indeterminate. We in-
cluded two groups of IBS patients: The IBS-GE group consisted of 
181 patients with IBS who were diagnosed by a gastroenterologist 
or other physician, and the IBS-POP group consisted of 231 pa-
tients with IBS from the general population whose IBS was deter-
mined on the basis of self-reported ROME-III diagnostic criteria. 
The control group was defined as individuals from the LifeLine Deep 
cohort (n = 893) and MIBS (n = 132) without GI complaints. Extensive 
phenotypic data were prospectively collected for both patients with 
IBD and patients with IBS-GE. In addition, multiple questionnaires 
were sent out to all participants in all cohorts to collect a wide range of 
uniformly processed phenotypes including disease activity, disease 
complaints, diet, and medication use. Each participant signed an 
informed consent form before participation in the cohort according 
to the UMCG Institutional Review Board (IRB; #M12.113965, 
2008.338) and the Maastricht University Medical Center (MUMC+) 
IRB (#MEC 08-2.066.7/pl).

Sample collection and metagenomic sequencing
Each participant collected a single stool sample at home, which was 
frozen or refrigerated immediately after stool production. All the 
samples were then processed after the same pipeline in one labo-
ratory (UMCG, Groningen). Fecal DNA was isolated, and metage-
nomic shotgun sequencing was performed as previously described 
using the Illumina HiSeq (10), generating on average 30 million reads 
(~3 Gb) per sample. After filtering for quality, 1792 gut metage-
nomes were used in all subsequent analyses.

Microbiome characterization
All metagenomic sequencing data were processed using the same 
extensive processing pipeline: (i) bacterial, viral, and micro-eukaryote 
abundances were determined using Kraken (33); (ii) strain diversity 
was determined by computing the heterozygosity of polymorphic 
loci within bacterial species; (iii) bacterial growth rates were esti-
mated using a previously published peak-to-trough ratio algorithm 
(16); (iv) microbial genes and pathways were determined using the 
HUMAnN2 software and the MetaCyc reference (34); and (v) the 
abundances of antibiotic resistance proteins and virulence factors 
were identified by aligning the metagenomic reads to protein se-
quences in the CARD (35) and VFDB (36), respectively.

Statistical analyses
All statistical analyses were conducted in R (v 3.3.2). To compare the 
collected phenotypes of the disease cohort with the population 
controls, a 2 test was used for binary data. Categorical data were 
tested using either the two-sided unpaired t test for normally dis-
tributed data or the two-sided unpaired Wilcoxon rank-sum test for 
non-normally distributed data. The Spearman coefficient was used 
to evaluate the correlation between phenotypes and the correlation 

between microbiome features. The proportion of explained variance 
of each phenotype on the microbial composition dissimilarities was 
evaluated using a PERMANOVA test implemented in the adonis 
function in the vegan R package (v.2.4-1). The association between 
microbiome features and disease phenotypes was tested using linear 
models with Maaslin R library (v.0.0.4). Disease phenotype predic-
tion tests based on microbiome features were constructed using 
elastic net linear models from glmnet R package (v.2.0-10), and the 
comparison between the goodness of fit of each model was tested 
using the two-sided paired Wilcoxon rank-sum test. The Benjamini 
and Hochberg procedure was used to adjust P values for multiple 
comparisons. An FDR <0.01 was considered statistically significant. 
A detailed description of the methods can be found in Supplementary 
Materials and Methods and figs. S3 to S6.
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