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Predictability and persistence of 
prebiotic dietary supplementation 
in a healthy human cohort
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Claire Duvallet1,2, Zain Kassam1,5 & Eric J. Alm1,2,3

Dietary interventions to manipulate the human gut microbiome for improved health have received 
increasing attention. However, their design has been limited by a lack of understanding of the 
quantitative impact of diet on a host’s microbiota. We present a highly controlled diet perturbation 
experiment in a healthy, human cohort in which individual micronutrients are spiked in against 
a standardized background. We identify strong and predictable responses of specific microbes 
across participants consuming prebiotic spike-ins, at the level of both strains and functional genes, 
suggesting fine-scale resource partitioning in the human gut. No predictable responses to non-prebiotic 
micronutrients were found. Surprisingly, we did not observe decreases in day-to-day variability of the 
microbiota compared to a complex, varying diet, and instead found evidence of diet-induced stress and 
an associated loss of biodiversity. Our data offer insights into the effect of a low complexity diet on the 
gut microbiome, and suggest that effective personalized dietary interventions will rely on functional, 
strain-level characterization of a patient’s microbiota.

A quantitative understanding of the forces that shape the composition of the microbiota in vivo is a prerequisite to 
rationally engineering or manipulating it toward a favorable clinical outcome. Diet has been shown to play a piv-
otal role in shaping the microbiota from an early age. For example, a study of the fecal microbiota of children from 
a rural African village in Burkina Faso found significant enrichment in Bacteroidetes and depletion in Firmicutes 
compared to Western counterparts, which is associated with a diet enriched in complex polysaccharides1. In 
the same vein, a dietary exchange experiment between a rural African cohort and an urban, African-American 
cohort, led to concomitant changes in their microbiota and disease-associated molecular biomarkers for the dura-
tion of the exchange2. This indicates that commensal microbiota may reflect long-term dietary trends but remain 
labile in the face of dietary perturbations. Indeed, it was also shown that short-term, large-scale changes in diet 
can result in rapid and reproducible effects on subjects’ gut microbiome composition3. Observations such as these 
highlight the interplay between a subject’s diet and their microbiota, and suggest that manipulating diet to engi-
neer the gut microbiome may be a promising clinical intervention, together with rationally designed probiotics.

The interaction between short-term diet and the host microbiome is also an important and understudied 
confounder in many microbiome disease association studies. For example, both long-term dietary differences4 
and alterations of the microbiota5 have independently been shown to be associated with differential rates of colon 
cancer; in the absence of a defined mechanism, it is unclear whether disease-associated microbial composition 
results from covariance with diet, which itself is causative, or whether the two factors are orthogonal and causally 
additive. A detailed and quantitative understanding of the impact of diet on the microbiome is therefore needed 
if the clinical vision of manipulating a patient’s diet to engineer their gut microbiome’s composition and/or met-
abolic output is to be achieved. However, identifying microbiome-diet interactions is complicated by a number 
of factors. Matching diets across patients is difficult, even if fixed meal plans are used, because participants may 
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eat different quantities of individual components, altering the ratio of nutrients. Moreover, complex diets make it 
difficult to identify the role of individual micronutrients.

Previous studies have shown that microbiome composition responds to perturbations in diet3,6,7. Indeed, some 
studies have shown that prebiotics affect the composition of the microbiota in predictable manner: for exam-
ple, it has been shown that supplementation with inulin results increased abundance of Bifidobacterium and 
Faecalibacterium in a cohort of obese women8, as well as Lactobacillus and Bifidobacterium in rats9. A more recent 
double-blind, randomized, cross-over intervention study identified inulin-specific responses from Anaerostipes, 
Bilophila and Bifidobacterium7. However, perturbation studies in humans typically involve broad changes across 
complex mixtures of micronutrients3, measure the response to a particular spike-in against a variable diet back-
ground8, or perform relative abundance calculations from culture-based or qPCR methods10,11. Resource parti-
tioning in environmental bacteria has been shown to occur at exquisitely fine scales12, yet little is known about 
resource partitioning in the human gut. If most species are generalists with respect to substrate use, then even a 
targeted addition can induce changes in many species, each competing for the same substrate. If most species are 
specialists, then we expect a strong response in a select few taxa.

Studies aimed at understanding how the microbiome will respond to a targeted change in a specific micro-
nutrient remain logistically daunting. To overcome these challenges, we conducted a highly controlled feeding 
study and dietary perturbation experiment in a healthy human cohort, in which participants were placed on a 
standardized liquid nutritional meal-replacement for six days. Against this controlled dietary background, we 
investigated the effect of individual micronutrient spike-ins, including several prebiotic supplements, to identify 
the microbial responders and assess the extent to which prebiotics result in predictable compositional changes in 
the human microbiome.

Results
Study design.  To examine the response of the healthy human microbiome to targeted addition of micronu-
trients, we enrolled 60 healthy participants and randomized each to one of seven dietary spike-in arms using a 
simple randomization procedure: pectin, inulin, cellulose, fish oil (unsaturated fat), coconut oil (saturated fat), 
protein powder, and control (no spike-in). These spike-ins were chosen to cover the dominant nutrient categories 
typically present in a human diet, namely soluble fiber (inulin and pectin), insoluble fiber (cellulose), unsaturated 
fat (fish oil), saturated fat (coconut oil), and protein. Basic demographic data and the results of the randomization 
process are available in Table 1. In order to assess day-to-day variability within and between participants under 
their habitual, variable diet, we first collected two consecutive baseline stool samples, after which participants 
underwent a bowel cleanse using an over-the-counter osmotic laxative to remove remnants of their previous 
diet from their colon. The following day, they began the standardized diet period: for the first three days, partic-
ipants consumed only a standardized liquid nutritional meal-replacement (Ensure Original, Abbot Nutrition) 
that is routinely used in both inpatient and outpatient care, and water. This was followed by three further days of 
liquid nutritional meal-replacement and water plus their assigned spike-in (Fig. 1a). The duration of three days 
for the initial equilibration period was chosen based on previous observations of autocorrelation dynamics in 
long-term time series of the gut microbiota in healthy humans, which found that most autocorrelations decay 
within 3 days13. Participants were instructed to consume liquid nutritional meal-replacement ad libitum to allow 
for differential caloric requirements without compromising the relative composition of the standardized diet, 
and requested to submit stool samples preserved in nucleic acid stabilization buffer upon natural passage, with a 
maximum of one sample per day. Analysis of the average daily caloric intakes on days 3 and 6 did not show sig-
nificant differences in caloric intake in a given arm. A post-intervention sample was taken on the first day of the 
resumption of routine, normal diet, as well as a follow-up sample one week later, to assess the persistence of any 
diet-induced compositional changes on the microbiota. All samples were processed within three days of receipt 
with only a single freeze-thaw cycle between sample processing and DNA extraction, library preparation and 
sequencing. Precise details of the standardized diet can be found in the Methods section.

Response to nutrient addition.  Targeted nutrient additions induced a targeted microbial response, sug-
gesting a high-level of resource partitioning within the human gut. On average, a typical participant had 9 OTUs 
that exhibited a greater than tenfold cumulative gain in relative abundance over the spike-in period (including 
sample ‘post1’), and 14 OTUs with a fivefold gain. Some, but not all, nutrients yielded specific responses con-
sistent across multiple individuals. To do this, we used differential abundance tests between day 3 and day 6 in 

Arm
Number 
enrolled

Age  
(mean, range)

Number of bowel 
movements 
(preB, day 6)

Average number 
of Ensure calories 
consumed (day 3, day 6)

BMI  
(mean, range)

Gender 
distribution 
(females, males)

Inulin 11 27.4 (23–30) 1.0, 1.4 2156, 1975 23.6 (19–30) 5, 6

Pectin 11 24.8 (23–28) 1.3, 1.4 1728, 1920 23.5 (22–28) 5, 6

Protein 5 25.2 (22–26) 1.3, 1.2 1815, 1870 21.4 (18–25) 2, 3

Saturated fat 7 24.4 (23–31) 1.7, 1.6 2127, 2420 24.2 (19–27) 2, 5

Unsaturated fat 6 23.3 (23–33) 2.0, 1.2 1980, 2640 23.7 (20–29) 2, 4

Cellulose 10 29.0 (27–31) 1.3, 1.5 1886, 1860 24.1 (20–30) 5, 5

Control 10 25.4 (22–32) 0.8, 1.3 1760, 2310 22.4 (20–24) 4, 6

Table 1.  Demographic and baseline data for each spike-in arm.
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each arm using DESeq214 using raw 16S rRNA counts data (FDR < 0.1). DESeq. 2 has been shown to have high 
sensitivity on small sample numbers (N < 20)15. The only spike-ins with predictable and statistically significant 
responses across participants were pectin and inulin (Fig. 1b). This underscores their identity as prebiotics capa-
ble of altering microbial composition, as the other nutrients considered are typically absorbed in the small intes-
tine and therefore not as likely to directly affect the composition of the colonic and stool microbiota. OTUs that 
responded to pectin or inulin generally reached their peak between day 5 and the first day of resuming a normal 
diet (post1). This is consistent with typical transit times of food in the gut, which vary by person but have been 
previously shown to involve a period of approximately 24–48 hours by using food dyes3. Responders to the preb-
iotic spike-ins were limited to the Clostridial Lachnospiraceae and Ruminococcaceae families, and the Bacteroides 
genus. While taxonomies were assigned using the RDP classifier16 and therefore did not include species-level 
annotation, we performed BLAST searches of the centroid 16 S rRNA sequences for OTUs of interest against the 
NR database on NCBI. Notably, members of the same species appeared to respond to different spike-ins (Fig. 1b): 
in particular, the 16 S rRNA sequences of the Faecalibacterium OTU responders, one of which responded to 
inulin and two to pectin, all mapped with 100% identity to Faecalibacterium prausnitzii genomes, suggesting that 
different commensal strains of the same species have different carbohydrate-active enzyme specificities. This is 
consistent with previous studies that reported F. prausnitzii blooms in vivo in participants given inulin as a sup-
plement17, and also that commensal F. prausnitzii isolates can be cultured in vitro on pectin18.

Importantly, certain OTU responders exhibited highly predictable and reproducible behavior across people. 
In particular, a Bacteroides OTU that mapped with 100% identity to B. uniformis genomes on the NR database 
bloomed strongly in inulin-consuming participants, reaching relative abundances between four- and sixteen-fold 
greater than that on day 3 in the same participant after consuming the spike-in (Fig. 2a). In contrast, a number 
of OTUs appeared to respond to specific spike-ins in some participants but not others. These were undetectable 
using a DESeq. 2-based differential abundance test across all participants in the given arm, but were identifiable 
through an analysis of the individual trajectories between days 3 and post1. In particular, the cellulose arm was 

Figure 1.  Nutritional meal replacement and prebiotic spike-ins result in reproducible changes across 
participants. (a) Schematic outlining the dietary and sampling regimen for the study. (b) OTUs that showed 
statistically significant (DESeq. 2, FDR < 0.1) differential abundance on day 6 compared to day 3 in response 
to particular spike-ins. Mean relative abundances are computed across all participants and then converted 
to Z-scores across timepoints, to illustrate relative changes through time. (c) OTUs that showed statistically 
significant (Wilcoxon Rank-Sum test, FDR < 0.1; N = 39) differential abundance on day 3 compared to baseline 
(preB). Complete RDP taxonomies can be found in Fig. S1.
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significantly enriched with these person-specific responses. These responses can take two forms: in the first kind, 
the bacterial responder was present in most or all participants, but only bloomed in a subset of them, while in the 
second kind, the responder was not present in all participants but when it was, bloomed reproducibly. The most 
notable example of the first kind was an OTU which mapped with 100% identity to Bacteroides cellulosilyticus, a 
known cellulose degrader and commensal inhabitant of the human gut19, which exhibited an extremely strong 
response in a single person, despite being present in all other participants within that arm (Fig. 2b). In contrast, 
Archaeal methanogens were only present in a subset of people, but in those participants bloomed in response to 
cellulose (Fig. S2). This finding is consistent with previous observations that only a subset of humans are known 
to harbor commensal Methanobacteria, which utilize hydrogen produced by certain bacterial cellulose degraders 
for methanogenesis20,21. It is also relevant in the context of reducing the net microbial production of hydrogen (as 
opposed to methane), which is one of the bases for a low FODMAP diet in the context of treating Irritable Bowel 
Syndrome22.

Strain-level dynamics.  It is now known that polysaccharide specificity occurs at the species level23. For 
example, species within the Bacteroides exhibit remarkable diversity in polysaccharide utilization24,25. However, 
it is unclear to what extent individual strains exhibit differential polysaccharide utilization phenotypes. To inves-
tigate this point, we used shotgun metagenomics sequencing data to compute the mean heterozygosity of Single 
Nucleotide Polymorphisms (SNPs) within different species as a proxy for strain-level diversity (cf. Methods). The 
only bacterium that exhibited statistically significant differences in heterozygosity on day 6 compared to day 3 
was B. uniformis, which had substantially lower heterozygosity in participants in the inulin arm on day 6 (Fig. 2c). 
This signal was retained (and indeed, stronger) as the identity cut-off for read mapping was increased up to 99%. 
This lower heterozygosity combined with increased relative abundance of the species in participants receiving 
inulin supplementation suggested that a specific strain of B. uniformis was being enriched in response to inulin.

Upon performing the same heterozygosity computation for B. uniformis, but this time between participants 
(i.e. the probability that overlapping read pairs, one from each person, exhibited a different allele), we observed a 
similar decrease in heterozygosity when 97% and 99% identity cut-offs were used, suggesting the same strain was 

Figure 2.  Inulin and pectin result in the enrichment of specific strains and specific enzymes in the metagenome 
across participants; in contrast, the same nutrient spike-in can also result in participant-specific responses. 
(a) Bacteroides uniformis blooms in response to inulin supplementation across all participants. The top 
plot shows mean and standard deviations of relative abundances across participants, and the bottom shows 
individual participant timeseries, normalized to relative abundance on day 3 for comparison purposes. (b) Same 
visualization for Bacteroides cellulosilyticus. (c) Average within-participant SNP heterozygosity in AMPHORA 
genes of B. uniformis. (d) Average between-participant SNP heterozygosity in AMPHORA genes of B. uniformis. 
(e) Relative abundance of pectinase enzymes in the metagenome. Statistical significance of the difference in 
abundance of pectinases on day 6 in the pectin arm was computed by a Wilcoxon Rank-Sum test compared to 
the abundance of pectinases on day 6 in the other arms (p < 10−5).
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being enriched across different participants (Fig. 2d). These data indicate that different strains of B. uniformis have 
different inulin-utilization phenotypes.

Functional gene content.  Since B. uniformis has a known inulin-specific polysaccharide utilization locus 
(PUL) in its genome24, we reasoned that the enrichment of different OTUs or strains could be attributed to the 
presence of specific genomic carbohydrate active enzymes, and so mapped the metagenomic reads against HMM 
profiles for inulinases and pectinases in dbCAN26. Consistent with this hypothesis, we observed an enrichment of 
pectinases in the metagenomes of participants in the pectin arm on day 6 (Fig. 2e). Surprisingly, however, we did 
not observe any such differences for inulinases in the inulin arm, perhaps due to poor annotation and character-
ization of these glycoside hydrolases and PULs in the human gut metagenome.

Response to background diet.  Having shown that the response to a targeted dietary perturbation was 
both specific to the spike-in and in some cases generalizable across participants, we next turned our attention to 
the large-scale dietary perturbation built in to our study design: the switch to a standardized diet. We first looked 
for taxa that reproducibly responded to the diet change across participants by identifying OTUs that were differ-
entially abundant on day 3 compared to baseline (preB) using a Wilcoxon Rank-Sum Test (FDR < 0.1, Benjamini/
Hochberg procedure). OTUs that responded to the dietary perturbation generally fell into two clearly identifiable 
groups which followed two opposing dynamic trajectories (Figs 1c and S1): one group of OTUs increased in 
abundance on nutritional meal-replacement compared to baseline (preB), only to become depleted once a nor-
mal diet was resumed, and a second group of OTUs became depleted on nutritional meal-replacement relative to 
baseline (preB), only to return upon resumption of normal diet. The majority of OTU responders in both groups 
belonged to the Clostridial bacterial families Ruminococcaceae and Lachnospiraceae, with some exceptions (most 
notably Erysipelotrichaeceae, Deltaproteobacteria, Parabacteroides and Bacteroides). Interestingly, there was no 
apparent high-level phylogenetic association with either group: indeed, OTUs assigned to the same bacterial 
genus by RDP sometimes exhibited opposing dynamics (e.g. OTUs in Clostridium XIVa).

Since the specific liquid nutritional meal-replacement used in this study is frequently used by physicians, 
dieticians and healthy individuals in a clinical context, our dataset offered a unique perspective on its effect on 
the microbiota of otherwise healthy humans. Aggregating participants from all spike-in arms, we counted the 
number of OTUs present and absent before and after the study, and found that participants lost an average of 
32.3% of their total number of baseline (sample preB) 16S OTUs during the period of fixed diet, only 16.1% of 
which were regained after a week of resuming a normal diet. It is possible that the bowel cleanse was responsible 
for this loss, so to test the extent to which the cleanse might be able to explain the loss of diversity, we reasoned 
that organisms that were still present on day 2 of the liquid nutritional meal-replacement were unlikely to have 
been lost as direct result of the cleanse alone. Of the OTUs lost by the end of the prescribed diet, approximately 
half (17.6%) were lost by day 2, and the remainder was lost after day 2. Of course, even for the latter organisms, 
we cannot eliminate the possibility that the cleanse did not act in concert with the diet as a driving force for their 
disappearance. Nonetheless, these data suggest a loss of approximately 16% in the measurable number of OTUs. 
We then repeated the SNP-level heterozygosity analysis described above for all species in our reference genome 
set, and obtained mean heterozygosity values across all AMPHORA genes in all species for a given participant 
(Fig. 3a). We found that overall, the mean heterozygosity of SNPs in the entire microbiota increased significantly 
from baseline (preB) to day 3, a change that was maintained (although slightly diminished) by day 6. The effect for 
Faecalibacterium, an important commensal organism that has been negatively associated with Crohn’s disease27, 
was particularly strong (Fig. 3b). This relative increase in the strain-level diversity of the microbiota suggested 
a flattening of the fitness landscape between strains. This observation is reminiscent of previous work in E. coli 
that showed certain environmental stresses can alleviate the effect of deleterious mutations and therefore reduce 
fitness differences between strains28.

We hypothesized that if the dietary change led to an increase in stress for the bacterial hosts, then we might 
expect to see an increase in active phage. The relative abundance of bacteriophage DNA in metagenomic 

Figure 3.  A diet consisting exclusively of nutritional meal replacement results in a flattening of the strain fitness 
landscape across the dominant genera of the gut microbiota. (a) Mean AMPHORA gene SNP heterozygosities 
within each participant on days 3 and 6, averaged across all bacterial species and normalized to baseline levels 
(preB). (b) Mean AMPHORA gene SNP heterozygosities averaged across the most abundant genera in the gut.
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sequences on days 3 and 6 relative to preB (Fig. 4a) suggested that many lysogenic phages were entering the lytic 
phase of their life cycles in response to the dietary perturbation.

The most striking and reproducible effect of the nutritional meal-replacement diet on microbiome compo-
sition was a decrease in the relative abundance of members of the Roseburia genus (Fig. 4b), an important and 
abundant butyrate-producing, mucosa-colonizing commensal that has been shown to be negatively associated 
with Crohn’s disease and ulcerative colitis, types of inflammatory bowel disease (IBD)29,30, as well as positively 
associated with obesity31. Concomitantly, a transient increase in Proteobacteria was observed: specifically, the 
genera Bilophila and Sutterella were found to transiently increase in relative abundance during the diet, peaking 
on days 2 and 4, respectively, before slowly returning to their baseline (preB) levels. While the physiological effect 
of these changes on the host is difficult to assess from genomic data alone, it is worth noting that both of these 
Proteobacterial genera have potential associations with disease: Bilophila has been associated with the production 
of sulfide, which leads to degradation of host mucin and induces colitis in mouse models32,33, while Sutterella 
has been associated with insulin resistance in obese patients, and autism with gastrointestinal disturbance in 
children34,35.

At the functional level, we observed significant increases in the relative abundance of mucinase genes in par-
ticipants’ metagenome in on days 3 and 6 relative to preB (Fig. 4c), consistent with a diet significantly impover-
ished in dietary fibers and complex polysaccharides, in which the colonic microbiota rely on host mucins as a 
carbon source36. As in the mouse models that first documented this observation, the effect was not rescued by any 
of the individual prebiotic spike-ins36. The increase in mucinases may also be linked to the depletion of Roseburia 
noted earlier: as a mucosal inhabitant, it is likely that destruction of the host mucin disrupted its native ecolog-
ical niche. Importantly, loss of Roseburia was partially reversed one week after resuming normal diet (Fig. 4b), 
suggesting that the resumption of a more complex diet for a period of one week was able to partially restore the 
mucosal layer and its Roseburia inhabitants.

To quantify the extent of change induced by diet as a function of time, we computed a weighted Unifrac 
distance between participant pairs before and after the prescribed diet. We found that participants resembled 
each other more closely on day 6 than they did at baseline (preB), but only marginally so. However, the effect was 
stronger in the prebiotic spike-in arms (PERMANOVA, p = 0.04), suggesting that prebiotics led to a more predict-
able and reproducible response across participants compared to the standardized nutritional meal-replacement 
diet (Fig. 5a). We reasoned that this could be explained by the chemical nature of the diet: in the case of prebiotics, 
only a small set of organisms appeared to respond, but their responses were consistent across people (Figs 1b and 
2a); in contrast, though the chemical composition of the standardized liquid diet was identical in all participants 
in the study, it was dominated by processed sugars, which are primarily absorbed in the small intestine, whose 
remainders act as ubiquitous substrates that would be chemically accessible to a larger fraction of the microbiota, 
thereby increasing stochasticity. We hypothesize that large inputs of non-specific substrates affect each partici-
pant’s community differently and as a function of their initial composition.

Previous studies showed extensive day-to-day variation in the gut microbiome37, hypothesizing that a large 
fraction of this variance may be due to diet13. We asked whether keeping diet standardized would reduce daily 
variation. We computed Weighted Unifrac distances between adjacent days within a person during a period of 
variable diet (samples ‘preA’ and ‘preB’) and compared this with Weighted Unifrac distances within the same 
participant on adjacent days in which the diet was identical (days 5 and 6). To our surprise, we found that there 
was no discernible increase in day-to-day similarity on a completely identical diet, irrespective of whether par-
ticipants were given prebiotic spike-ins (Fig. 5a). These data suggest that short-term dietary fluctuations on daily 
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Figure 4.  Nutritional meal replacement results in stress-like responses in the microbiota. (a) Log-transformed 
mean relative abundance of various bacteriophages in all participants, normalized to baseline levels (preB). (b) 
Mean and standard error timeseries of the relative abundance of Roseburia, Bilophila and Sutterella. (c) Relative 
abundance of mucinase genes on day preB, day 3 and day 6. (d) Bristol Stool Scale of all participants throughout 
the study.
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timescales contribute in an only very limited manner to the day-to-day variability observed in a participant’s 
fecal microbiota, and that other variables, including fluctuations in host lifestyle, physiology, immunology, and 
perhaps even experimental noise are more important factors.

We found that a participant’s sample could reliably be classified as pre- or post-nutritional meal-replacement. 
Two Random Forest Classifiers (RFCs) were constructed to classify samples as either baseline (preB) or the first 
day of resuming a normal diet (post1), and baseline (preB) or one week after resuming a normal diet (post2), 
respectively. In the first classifier, we obtained an AUC of 0.93 (p < 10−7), while in the second, we obtained an 
AUC of 0.90 (p < 10−5) (Fig. S3). Both classifiers had a classification accuracy (fraction of correctly classified 
cases during cross-validation) of 83%. These data indicate that there remain effects of the fixed diet on the overall 
microbiota even one week after resuming a normal diet (Table S2). The top 10 features of the preB/post1 RFC 
included three of the four OTUs assigned to Lachnospiraceae incertae sedis that appeared in Fig. 1c. Digging 
deeper, we found that these OTUs were indeed depleted on nutritional meal-replacement, while the remaining 
OTU replaces them, resulting in a constant combined relative abundance through time (Fig. 5b). These dynamics 
suggest a switch in occupancy of relative organisms in a particular niche in response to the dietary perturbation.

Discussion
When designing our study, we hypothesized that by introducing a constant diet background, we would improve 
our ability to detect microbial responders to particular prebiotic spike-ins. Indeed, we were able to detect repro-
ducible microbial responses to both inulin and pectin across participants in relatively small numbers for each 
arm (<10) after filtering for early withdrawals or insufficient sampling. These responses were consistent across 
participants, including at the level of strains in the case of B. uniformis, indicating a strong predictability of the 
effects of prebiotic supplementation on the microbiota.

Interestingly, we did not observe significant blooms of Bifidobacterium in response to inulin, which have 
previously been documented in the literature10,11,17,38. While we cannot conclusively explain this discrepancy, it is 
worth noting that many such studies are culture-based, emphasizing the need for further study and verification of 
these phenomena using modern sequencing technologies directly applied to stool. It is also worth noting that the 
three Bifidobacterium OTUs present in the dataset were only present in a subset of the participants in the inulin 
arm, which necessarily reduced our statistical power to detect responses thereof. In the case of at least one such 
non-culture-based analysis of the Bifidogenic nature of inulin, subjects were specifically chosen to contain appre-
ciable amounts of Bifidobacteria17. This highlights the difficulty in observing statistically significant, reproducible 
responses of the microbiota in vivo in a cohort containing randomly chosen participants who may or may not 
contain the bacteria in question.

Moreover, in contrast to the predictability of inulin- and pectin-specific responses, certain responses were not 
detectable through traditional statistical means, because they only occurred in a subset of participants. The most 
noteworthy example was B. cellulosilyticus, which appeared to bloom strongly in response to cellulose in only one 
person. Archaeal methanogens also bloomed in responses to cellulose, but only in participants in which they were 
present. It is possible that these two cases are one and the same, i.e. that the B. cellulosilyticus OTU contains mul-
tiple strains with different functional properties, and the strain capable of degrading cellulose was present only in 
that one participant. Alternatively, it is possible that these person-specific blooms are manifestations of complex 
microbial networks on which this species depends to exhibit this phenotype. More broadly, these data offer a 
tantalizing glimpse into the potential for personalized nutritional interventions that account for strain-level com-
position of a patient’s microbiota.

We also hypothesized that standardizing diet across participants would reduce the quantitative contribution 
of short-term dietary fluctuations on the microbiota, a concern in the design of clinical studies aiming to inves-
tigate the association between microbial composition or fluctuations and disease. However, after going to great 
lengths to place all participants on a standardized, liquid diet consisting of a nutritional meal-replacement, we 
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Figure 5.  Participants’ day-to-day variability in the composition of the microbiota does not decrease on 
identical diets, but between-participant similarity increases. (a) Weighted Unifrac values between and 
within participants on day preB (before) and day 6 (after). Error bars represent standard deviations. (b) 
Log-transformed mean relative abundance of the four distinct OTUs given a taxonomic assignment of 
Lachnospiracea incertae sedis at the genus level and that were found to be differentially abundant on day 3 
compared to baseline (preB). Their combined relative abundance is shown in a solid line. For clarity, the denovo 
OTU IDs are labeled as follows: denovo6 - A; denovo84 - B; denovo65 - C; denovo155 - D.
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found that the diet introduced an axis of variation in the microbiota that did not appear to reach full stationarity 
after 6 days, and was further complicated by the difficulty of adhering to a liquid diet. From a practical standpoint, 
these data indicate that standardizing diet in a clinical cohort in this manner will have limited returns in reducing 
noise introduced by short-term dietary fluctuations, and may even introduce additional confounders. Averaging 
over additional participants or multiple timepoints may be more suitable means for reducing the impact of diet 
on other studies.

Moreover, the prescribed diet appeared to result in diet-induced stress on the participants’ microbiota, 
with a flattening of the overall fitness landscape at the level of strains, an increase in the relative abundance of a 
large number of phages, and increases in mucinase abundance in the metagenome, indicative of increased con-
sumption of host mucin as a carbon source and degradation of the mucosal layer by the microbiota. While the 
diet-induced stress is potentially confounded with stress induced from the bowel cleanse, the reported changes 
persisted from days 3 to 6, well after bowel movements returned to baseline consistency (Fig. 4d), indicating that 
the prescribed diet was a likely causative factor underlying these observations. While we did not experimentally 
measure changes to the mucosa, it is worth noting that thinning of the defensive mucosal layer is associated with 
a number of intestinal diseases, including colon cancer and IBD39–41. It is likely that the chemical contents of 
the nutritional meal-replacement we used, which consist to a large extent of processed sugars easily converted 
to glucose, can explain these changes. The ubiquity of this substrate likely shrinks the phenotypic differences 
between strains, and favors fast growing organisms over the more slowly dividing host commensals, as suggested 
by the Proteobacterial responders (Fig. 4b). Taken together, these data suggest that clinical use of dietary supple-
mentation or meal replacement strategies would benefit from more thoughtful formulations designed with the 
microbiota in mind, by including a higher content of dietary fibers and complex polysaccharides selected for their 
prebiotic qualities, in order to minimize potentially detrimental effects to the host.

Methods
Experimental model and participant details.  60 healthy human volunteers, consisting of 25 females 
and 35 males, were enrolled into the study under the supervision of the MIT Committee on the Use of Humans 
as Experimental Subjects (COUHES), who approved the study under protocol number 1504007066A002 (trial 
ID: ISRCTN53935058, registered 2/23/18). All participants provided written, informed consent, and the study 
was conducted in accordance with the relevant guidelines and regulations. To be included, participants had to be 
between 18 and 70 years of age and have a BMI between 18 and 30. Exclusion criteria were food allergies or die-
tary intolerances of any kind, a history of irritable bowel syndrome, inflammatory bowel disease, Type-2 diabetes, 
kidney disease or intestinal obstruction, allergy to polyethylene glycol, antibiotics treatment in the 6 months lead-
ing up to the study, untreated in situ colorectal cancer, or currently pregnant, planning to get pregnant in the next 
60 days, or breast-feeding. Enrollment occurred between November 2015 and December 2016. Baseline cohort 
data and the results of the randomization process are available in Table 1.

Method details.  Study logistics.  Upon being consented into the study, participants were first randomized 
to a spike-in arm and were then provided with a kit consisting of materials for a bowel cleanse, sufficient stool 
collection hats and labeled Para-Pak vials (Meridian Biosciences, Inc.) with 5 ml RNALater (Ambion, Inc.) for 
daily sampling, in addition to instructions for appropriate sampling strategy, and three daily portions of their 
allocated spike-in. They were also provided with several locations in which stool samples could be dropped off 
and additional liquid meal-replacement could be picked up, and were instructed to collect samples whenever they 
naturally passed stool, with at most one sample per day. Samples were collected daily by study coordinators at 
all drop-off locations, and transported to a Biosafety Level 2 laboratory at MIT, where they were processed daily 
in batches, and no later than three days after passage. In addition, participants completed a daily questionnaire 
to record Bristol Stool Scale and bowel movement frequency, report any notable changes in health that did not 
relate to the study, including consuming antibiotics and medication, and inform study coordinators of lapses in 
adherence to the standardized diet, as well as document the amount of liquid meal-replacement consumed that 
day. Samples obtained after any reported lapses were excluded from the analysis.

Dietary regimen.  All participants included in the analysis followed the dietary regimen outlined in Fig. 1a. For 
two days prior to beginning the study, participants were instructed to continue their habitual diet and provide 
two baseline stool samples (preA and preB). After obtaining the second stool sample, participants underwent 
a bowel cleanse in the evening by consuming 150 g of over-the-counter osmotic laxative PEG 3350 (MiraLAX, 
Bayer) and 64 oz bottles of electrolyte solution (Gatorade, PepsiCo) and were instructed to consume only clear 
liquids during the cleanse. Upon waking (day 1), participants began the standardized diet consisting entirely of 
liquid, nutritional meal-replacement (Ensure Original, Abbott Nutrition) and water for a period of six days. They 
were allowed to consume both ad libitum to avoid unnecessary weight loss and allow for heterogeneity in basal 
metabolic rates and daily caloric requirements. The liquid, nutritional meal-replacement was available in sev-
eral flavors: vanilla, chocolate, strawberry, butter pecan, and coffee latte. Dark chocolate was excluded due to an 
increased amount of dietary fiber compared to the other flavors, which shared the same composition. Participants 
were allowed to choose freely between flavors, but were requested to maintain a consistent daily combination if 
they intended to consume several flavors. Nutritional composition of a single serving (one 8 oz bottle) of the liq-
uid, nutritional meal replacement reported by Abbott Nutrition is as follows: 220 calories, consisting of 6 g total 
fat (1 g saturated fat, 0 g trans fat, 2 g polyunsaturated fat, 3 g monounsaturated fat), <5 mg Cholesterol, 200 mg 
Sodium, 370 mg Potassium, 32 g total carbohydrate (<1 g dietary fiber, 15 g sugars, derived mostly from corn 
maltodextrin and glucose), and 9 g protein. This consists of a diet that is significantly impoverished in dietary 
fiber, which we reasoned would improve our ability to detect changes in response to prebiotic spike-ins.
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Participants were also provided with three daily doses of their allocated spike-in, to be consumed on days 4, 5 
and 6. Spike-ins were given in pre-weighed powder form for inulin, pectin, cellulose and protein powder mixture, 
while fish oil was provided in pill form, and coconut oil was provided raw in pre-weighed tubes. Participants 
were instructed to consume their spike-ins throughout the day by mixing them either with a serving of liq-
uid meal-replacement or water, and to record any lapses in either adherence to the standardized diet or to the 
consumption of their allocated spike-in on the daily questionnaires provided. The allocated daily doses of each 
spike-in were as follows: 10 g/day of inulin (CAS number 9005-80-5, Alfa Aesar); 35 g/day of pectin (CAS number 
9000-69-5, MP Biomedicals, LLC); 20 g/day of cellulose (NutriCology); 40 g/day coconut oil (Kirkland Signature 
Organic Coconut Oil); 6 pills of fish oil each containing 1050 mg of omega-3, −5, −6, −7, −9 and −11 unsatu-
rated fatty acids (Kirkland Signature Wild Alaskan Fish Oil); 51 g of protein powder, consisting of 25.5 g of whey 
protein (Optimum Nutrition Gold Standard 100% Whey Protein Powder) and 25.5 g of casein protein (Optimum 
Nutrition Gold Standard 100% Casein Protein Powder); no spike-in for control. Spike-in doses were set at 150% 
of the Recommended Daily Allowance (RDA) for that particular nutrient, where available. In the absence of a 
RDA (e.g. inulin, pectin, and cellulose), doses were set at the highest dose that the investigators determined could 
reasonably ingested by a participant over the course of a day without experiencing discomfort.

Participants were instructed to consume the standardized diet plus allocated spike-in until the end of day 
6. Two follow-up samples were also obtained, one on the day of resuming a normal, variable diet (post1) and 
another a week later (post2).

Stool sample processing and DNA sequencing.  Participants collected approximately 1 g of stool and dissolved it 
in 5 ml RNALater (Ambion, Inc.) pre-aliquoted into Para-Pak vials (Meridian Biosciences, Inc.). In order to max-
imize our ability to obtain clean genomics signals and avoid experimental and sample processing confounders, 
great efforts were taken to ensure that all samples were treated in the same manner. Samples were picked up from 
daily drop-off locations by study coordinators daily, and washed with PBS the same day or no longer than 3 days 
upon passage before being frozen at −80°C. 29 of the 60 participants returned a complete set of daily stool sam-
ples for the entirety of the requested timeseries. Samples were aggregated through time and submitted together 
for DNA extraction, library preparation and DNA sequencing at the Genomics Platform at Broad Institute of MIT 
and Harvard. 16 S rRNA regions were amplified from all samples using a universal V4 primer. PreB, day 3 and 
day 6 samples were also sequenced using shotgun metagenomics sequencing. 16 S rRNA amplicon sequencing 
was performed on an Illumina MiSeq using v2 chemistry, and metagenomics sequencing was performed on an 
Illumina HiSeq. 2500 High Output flowcell using v4 chemistry.

Quantification and statistical analysis.  16S rRNA sequencing data analysis.  Raw read processing and 
OTU calling: Raw paired-end 16 S rRNA Illumina sequencing reads were merged with PEAR42, resulting in a total 
of 64,743,565 raw merged reads. Reads were then demultiplexed, and quality trimmed with a cut-off of Q = 25 
using usearch843, before being trimmed to a common length of 226 bases. Dereplicated reads were then clustered 
into OTUs to 97% identity using UPARSE44. OTU centroids were assigned a taxonomy using the RDP classifier 
using an uncertainty cut-off of 0.516. Since RDP does not return species annotation, we also performed BLAST 
searches of the centroid 16 S rRNA sequences for OTUs of interest against the NR database on NCBI45. A species 
annotation was given if the top 10 alignments matched a species’ genome with 100% identity. Samples with fewer 
than 5,000 reads (totaling 38 out of 501) were discarded from the analysis.

Phylogenetic trees and distance calculations: A phylogenetic tree was constructed from all 16 S OTU cen-
troid sequences using the neighbor-joining based on uncorrected distances, implemented in the FastTree 
tool46. Sub-trees in Fig. 1 were computed in the same manner but using only the OTU sequences of interest, 
and plotted using iTOL47. Beta diversity calculations between samples (Fig. 5a) were computed from rarefied 
OTU tables with the Weighted Unifrac distance48 using the scikit-bio Python package and the phylogenetic tree 
mentioned in the section above. Prior to computing beta diversity values, a rarefaction was performed on the 
OTU table by down-sampling each sample to 5,516 reads (the minimum read count in the dataset after filtering), 
to remove artifactual effects of differential read counts across samples. Statistical significance of the differences 
in between-participant beta diversities on day 6 in the prebiotic versus non-prebiotic arms was assessed with a 
PERMANOVA test (N = 29, 10,000 permutations) using the scikit-bio Python package.

Statistical tests of differential abundance: Statistical tests to identify OTU responders to spike-ins (Fig. 1b) 
were performed using DESeq. 214. Participants who had both day 3 and day 6 samples were aggregated into their 
respective spike-in arms, and the test was performed between those two days. Due to the effects of attrition on 
participant numbers and since not all participants produced daily stool, day 5 samples were also included in the 
day 6 category in the absence of a day 6 sample. The number of participants in each arm that had the necessary 
samples to be included in the statistical tests was N = 9 pectin, N = 5 inulin, N = 4 cellulose, N = 6 in the saturated 
fat, N = 3 unsaturated fat, N = 2 protein, and N = 6 control. OTU responders were identified from each arm as 
OTUs whose FDR corrected q-value was below 0.1 in that arm and above 0.1 in the control arm.

OTU responders to the standardized, nutritional meal-replacement background (Figs 1c and S1) were identi-
fied using a Wilcoxon rank-sum test between preB and day 3 (N = 39), with a Benjamini/Hochberg FDR cut-off 
of 0.1.

Metagenomics sequencing data analysis.  Raw read processing: Human reads were removed from raw forward 
and reverse Illumina Whole Genome Shotgun (WGS) reads by aligning to the hg18 human genome from the 
UCSC Genome Browser49 using BWA50. To remove biases introduced by PCR replicates, remaining reads were 
then dereplicated using PRINSEQ51., for all exact matches and 5′ duplicates (prinseq option: -derep 2). Unique 
reads were then quality-trimmed with trimmomatic to Q = 2052, to a final total readcount of 1,695,900,645, or an 
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average sequencing depth of 15,007,970 reads per sample, with 15 out of 113 samples having fewer than 1,000,000 
reads.

Carbohydrate active enzyme annotations: Functional annotations for reads were obtained from the CAZY 
database using dbCAN26. Pre-processed metagenomics reads were converted to the 6 possible Open Reading 
Frames using using EMBOSS Transeq53. and aligned to the HMM profiles using HMMER3.054. The profiles 
searched were: GH32, GH91 and CBM38 for inulinases/fructanases, and CE8, CE13, PL1 and GT47 for pecti-
nases. Only CE8 (shown in Fig. 2e) showed statistically significant differences as measured by Wilcoxon rank-sum 
tests on the relative abundances on days 3 and day 6. We also searched PL8 for hyaluronate lyases (EC 4.2.2.1), 
also known as ‘mucinases’ (as shown in Fig. 3). A 1e-3 E-value cutoff was used for alignments less than 80 amino 
acids long, and 1e-5 for longer alignments.

Single nucleotide polymorphism (SNP) heterozygosity calculations: Heterozygosity values reported in Figs 2 
and 3 were computed using AMPHORA55 to identify thirty-one single-copy phylogenetic markers in a set of 649 
non-redundant reference genomes from the Human Microbiome Project56. Metagenomics reads were mapped 
from each sample to these genes using BWA-mem50 with the “-a” flag and a conservative cut-off of 90% sequence 
identity. The 90% identity cut-off was chosen based on previous work showing that a 97% distance in 16S rRNA, 
typically associated with the species barrier, is associated with a median distance of ~85% in AMPHORA genes57. 
We also performed these alignments with cut-offs of 97% and 99%. These thirty-one alignments were then fil-
tered for SNPs by removing all monomorphic sites. Next, all samples with zero coverage at more than 25% of the 
identified SNP loci were removed, and finally alignment sites with atypical coverage, defined as being greater 
than 1.5 standard deviations away from the mean coverage, were also removed. This left us with a set of informa-
tive single nucleotide polymorphic sites for each gene alignment. Within-participant heterozygosity values were 
computed at each site by considering the set of all reads in a sample that overlapped with that site, and calculating 
the probability that any of these two reads had the same allele. From the Hardy-Weinberg equilibrium, 1 minus 
this value gives the heterozygosity. Between-participant heterozygosity values for a given site were computed by 
considering the set of all reads overlapping with that site in two participants, and calculating the probability that 
two reads, one from each participant, share the same allele. Python code for performing these calculations from 
sorted BAM files can be found at the following Github link: https://github.com/thomasgurry/strains/blob/master/
heterozygosity.py

Bacteriophage annotations: Relative abundance of phages were estimated using Kraken and the full NCBI 
phage database58. Filtered read counts were converted to relative abundances by dividing by the total number of 
reads.

Machine learning.  Random Forest Classifiers (RFCs) were built using the scikit-learn Python package. 
Classifiers were built using participants which contained one of each sample of the classification classes: for 
example, a participant had to contain one of ‘preA’ or ‘preB’ samples and a ‘post1’ sample to be included in 
the preB/post1 RFC. This ensured that each class was balanced and that no biases could be introduced from 
inclusion of samples from a participant in only one of the two classes. The preB/post1 and preB/post2 RFCs had 
N = 26 and N = 23 in each class, respectively. Cross-validation was performed using a ‘leave a participant out’ 
approach, i.e. by successively removing both samples from a participant samples and using them as test sets, in 
order to construct an average Receiver Operator Characteristic (ROC) from which to compute an AUC. P-values 
for each classifier were computed using Fisher exact tests on the resulting confusion matrices. Classification 
accuracy was computed from the confusion matrices as the fraction of correctly classified cases, i.e. (TP + TN)/
(TP + TN + FP + FN), where TP, TN, FP and FN are the number of true positives, true negatives, false positives 
and false negatives, respectively.

Data availability.  The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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